Marine geology

Tectonic subsidence characteristics on the northern continental Margin of the South China Sea since Late Miocene

  • CONG Xiao-rong ,
  • YU Xing-he ,
  • SU Ming ,
  • SHA Zhi-bin ,
  • WU Neng-you
Expand
  • 1. Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; 
    2. Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China; 
    3. Department of Energy Resources, China University of Geosciences, Beijing 100083, China; 
    4. Guangzhou Marine Geology Survey, Guangzhou 510760, China

Received date: 2012-07-10

  Revised date: 2012-10-18

  Online published: 2014-01-21

Abstract

The Late Miocene unconformity T3 at about 11.608 Ma is an important boundary at the post-rifting stage in the northern continental slope of the South China Sea, which separated the underlying thermal subsidence and overlying accelerated subsidence. Based on the tectono-sedimentary analysis, the strata of the accelerated subsidence stage could be classified into three structural layers, the Late Miocene, the Pliocene, and the Quaternary. In this study, the Airy equilibrium model and 1092 simulation locations were used to calculate the tectonic subsidence rate along with the back-stripping technology, which could reveal the characteristics of the burial history during an accelerated subsidence stage. On the whole, since the Late Miocene the tectonic subsidence have played the dominant role in the northern continental slope of the South China Sea, as much as 70%. The centers of the subsidence are located in the Central Depression Belt of the Qiongdongnan Basin, the deep-water areas in the Pearl River Mouth Basin, and the Southwest Taiwan Basin; especially in the Southwest Taiwan Basin, the significant tectonic subsidence rate of the Quaternary could be 190 m·Ma-1. The evolution of the subsidence rate displayed double segment character. From the Late Miocene to Pliocene, the tectonic subsidence rate decreased slightly and the average rate was 70 m·Ma-1; since the Quaternary, the rate had a rapid increase, to as much as 120 m•Ma-1. The areas that had the intraday variation of the tectonic subsidence, such as the basin boundary, join belt between upheaval and depression, and the tectonic activity areas with fault and fold could provide the helpful geological setting for the accumulation of gas hydrate.

Cite this article

CONG Xiao-rong , YU Xing-he , SU Ming , SHA Zhi-bin , WU Neng-you . Tectonic subsidence characteristics on the northern continental Margin of the South China Sea since Late Miocene[J]. Journal of Tropical Oceanography, 2013 , 32(6) : 42 -49 . DOI: 10.11978/j.issn.1009-5470.2013.06.007

References

龚再升, 李思田. 南海北部大陆边缘盆地分析与油气的聚集[M]. 北京: 科学出版社, 1997: 131-140.
李思田, 林畅松, 张启明, 等. 南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事件[J]. 科学通报, 1997, 43(8): 797-810.
于兴河, 张志杰, 苏新, 等. 中国南海天然气水合物沉积成藏条件初探及其分布[J]. 地学前缘, 2004, 11(1): 311-315.
于兴河, 张志杰. 南海北部陆坡区新近系沉积体系特征与天然气水合物分布的关系[J]. 中国地质, 2005, 32(3): 470-476.
张光学, 黄永样, 陈邦彦. 海域天然气水合物地震学[M]. 北京: 海洋出版社, 2003: 241-247.
林畅松, 张艳梅. 盆地沉降史模拟分析[G]//龚再升, 李思田. 南海北部大陆边缘盆地分析与油气聚集. 北京: 科学出版社, 1997: 75-86.
张云帆, 孙珍, 郭兴伟, 等. 琼东南盆地新生代沉降特征[J]. 热带海洋学报, 2008, 27(5): 31-36.
袁玉松, 杨树春, 胡圣标, 等. 琼东南盆地构造沉降史及其主控因素[J]. 地球物理学报, 2008, 51(2): 376-383.
吕学菊, 肖力, 林正良, 等. 珠江口盆地西部珠三坳陷沉降史分析[J]. 新疆石油地质, 2008 , 29(2): 195-197.
易海, 钟广见, 马金凤. 台西南盆地新生代断裂特征与盆地演化[J]. 石油实验地质, 2007, 29(6): 560-564.
高红芳, 杜德莉, 钟广见, 等. 珠江口盆地沉降史定量模拟和分析[J]. 南海地质研究, 2006, 1 : 11-20.
WU SHIGUO, LIU ZHAN, WANG WANYIN, et al. Late Cenozoic tectonic deformation in DongSha Islands and adjacent sea area[J]. Chin J Oceanol Limn, 2003, 21(4): 377-388.
WU SHIGUO, ZHANG GUANGXUE, HUANG YONGYANG, et al. Gas hydrate occurrence on the continental slope of the northern South China Sea[J]. Mar Petrol Geol, 2005, 22(4): 403-412.
李家彪. 中国边缘海形成演化与资源效应[M]. 北京: 海洋出版社, 2005: 507.
李向东. 准噶尔盆地北缘中新生代沉降史分析[D]. 西安: 西北大学, 2007: 3-5.
WATTS A B, RYAN W B F. Flexure of the lithosphere and continental margin basins[J]. Tectonophysics, 1976, 36(1-3): 25-44.
ALLEN P A, ALLEN J R. Basin Analysis: Principle and applications[M]. London: British Petroleum Company, 2004: 52-53.
田在艺, 张庆春. 中国含油气沉积盆地论[M]. 北京: 石油工业出版社, 1994: 98-114.
ATHY L F. Density Porosity and compaction of sedimentary rocks[J]. AAPG Bulletin, 1930, 14(1): 1-24.
陈晓良, 赵泉鸿, 翦知湣. 南海北部ODP1148站中新世以来的碳酸盐含量变化及其古环境意义[J]. 海洋地质与第四纪地质, 2002, 22(2): 69-73.
刘方兰, 吴庐山. 西沙海槽海域地形地貌特征及成因[J]. 海洋地质与第四纪地质, 2006, 26(3): 7-14.
丁巍伟, 黎明碧, 赵俐红, 等. 南海西北次海盆新生代构造-沉积特征及伸展模式探讨[J]. 地学前缘, 2009, 16(4): 147-156.
LOUIS S T, 孙萍. 板块地层断裂是台湾俯冲极性反转的机理[J]. 海洋地质动态, 2000, 6: 9-11.
向宏发, 韩竹军, 貌顺民, 等. 红河断裂带大型右旋走滑运动定量研究的若干问题[J]. 地球科学进展, 2004, 19(6): 56-59.
HUANG C H, XIA K Y, PERTER B. Structural evolution from Paleogene extension to Latest Miocene-Recent arc-continent collision offshore Taiwan: Comparison with on land geology[J]. J Asian Earth Sci, 2001, 19(5): 619-639.
HALL R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations[J]. J Asian Earth Sci, 2002, 20 (4): 353-431.
钟建强, 黄慈流, 詹文欢, 等. 台西南盆地晚新生代地质演化分析[J]. 海洋科学, 1994, 4: 34-37.
王宏语, 孙春岩, 张洪波, 等. 西沙海槽潜在天然气水合物成因及形成地质模式[J]. 海洋地质与第四纪地质, 2005, 25(4): 85-91.
黄永样, 张光学. 我国海域天然气水合物地质-地球物理特征及前景[M]. 北京: 地质出版社, 2009: 80-86.
王宏斌, 张光学, 杨木壮, 等. 南海陆坡天然气水合物成藏的构造环境[J]. 海洋地质与第四纪地质, 2003, 23 (1): 81-86.
BABA K, YAMADA Y. BSRs and associated reflections as an indicator of gas hydrate and free gas accumulation: An example of accretionary prism and forearc basin system along the Nankai Trough, off central Japan[J]. Resour Geol, 2004, 54(1): 11-24.
张光学, 祝有海, 梁金强, 等. 构造控制型天然气水合物矿藏及其特征[J]. 现代地质, 2006, 20(4): 605-612.

Outlines

/