Journal of Tropical Oceanography >
Gas composition of submarine hydrothermal systems off Guishandao and in coastal hot springs off Lüdao in Taiwan
Received date: 2012-10-09
Revised date: 2012-12-24
Online published: 2014-01-21
Gas composition is important for analyzing the origin of hydrothermal activity, for assessing active magma level and for evaluating eco-environmental effects of hydrothermal activity. In this study, we obtained gas samples from submarine hydrothermal systems off Guishandao and in coastal hot springs off Lüdao in Taiwan using self-made piston gas samplers. The chemical compositions of these gas samples were measured using MAT271 mass spectrometer. The main component of gases from Guishandao hydrothermal area is CO2, characterized by low temperature volcanic zone with high content of CH4 and active gases of CO2 and H2S, and low levels of SO2 and HCl. In 2011, the average contents of CO2, N2 and CH4 from white vents are 642.8 ‰, 149.4 ‰, and 177.5 ‰, respectively; those from yellow vents are 740.1 ‰, 36.7 ‰, and 30.9 ‰, respectively. The gas samples of Lüdao hot springs are dominated by N2 and enriched in CH4. The contents of active gases such as CO2 and H2S are relatively low. In 2012, the average contents of hydrothermal gases CO2, N2 and CH4 of Zhaori egg boiling hot spring district are 642.8‰, 149.4 ‰, and 177.5 ‰, respectively; those from inshore side hot spring of intertidal zone are 740.1 ‰, 36.7 ‰, and 30.9 ‰, respectively. The gas from Guishandao area is originated from deeper stratum than that from Lüdao hot springs, and has reacted with surrounding rock less violently during upwelling.
Key words: seafloor hydrothermal; Guishandao; Lü dao; carbon dioxide; methane; hydrogen sulfide
ZHANG Hai-yan , YANG Tsanyao Frank , CHEN Chen Tung Arthur , CHEN Xue-gang , QIN Hua-wei , JIN Ai-min , DING Qian , PAN Yi-wen , XIA Mei-sheng , YE Ying . Gas composition of submarine hydrothermal systems off Guishandao and in coastal hot springs off Lüdao in Taiwan[J]. Journal of Tropical Oceanography, 2013 , 32(6) : 50 -57 . DOI: 10.11978/j.issn.1009-5470.2013.06.008
刘长华, 曾志刚. 龟山岛附近海底热液自然硫烟囱体的硫同位素研究[J]. 海洋与湖沼, 2007, 38(2): 118-123.
ZENG ZHIGANG, CHEN C T A, YIN XUEBO, et al. Origin of native sulfur ball from the Kueishantao hydrothermal field offshore northeast Taiwan: Evidence from trace and rare earth element composition[J]. J Asian Earth Sci, 2011, 40(2): 661-671.
CHIU C L, SONG S R, HSIEH Y C, et al. Volcanic characteristics of Kueishantao in northeast Taiwan and their implications[J]. Terr Atmos Ocean Sci, 2010, 21(3): 575-585.
刘长华. 台湾东北部龟山岛附近海域自然硫烟囱体的成因研究[D]. 青岛: 中国科学院海洋研究所, 2007: 20-25.
YANG C M, LI J J, CHIANG H C. Stakeholders’ perspective on the sustainable utilization of marine protected areas in Green Island, Taiwan[J]. Ocean Coast Manage, 2011, 54(10): 771-780.
CHEN T C, KU K C, YING TC. A process-based collaborative model of marine tourism service system-The case of Green Island area, Taiwan[J]. Ocean Coast Manage, 2012, 64: 37-46.
CHEN C A, WANG B, HUANG J, et al. Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Taiwan, China[J]. Acta Oceanol Sin, 2005, 24(1): 125-133.
ZHANG YAO, ZHAO ZIHAO, CHEN C T A, et al. Sulfur metabolizing microbes dominate microbial communities in Andesite-Hosted Shallow-Sea hydrothermal systems[J]. PLoS ONE, 2012, 7(9): e44593.
郭富雯. 龟山岛海底热液活动初步调查[D]. 台北: 台湾中山大学, 2001: 19.
YANG T F, LAN T F, LEE H F, et al. Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications[J]. Geochem J, 2005, 39(5): 469-480.
CHEN C T A, ZENG ZHIGANG, KUO FUWEN, et al. Tide-influenced acidic hydrothermal system offshore NE Taiwan[J]. Chem Geol, 2005, 224(1-3): 69-81.
DANDO P R, HUGHES J A, LEAHY Y, et al. Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc[J]. Cont Shelf Res, 1995, 15(8): 913-929.
谢佩珊. 台湾地区温泉与泥火山气体来源之初探[D]. 台北: 台湾大学, 2000: 84-85.
LAN T F, YANG T F, LEE H F, et al. Compositions and flux of soil gas in Liu-Huang-Ku hydrothermal area, northern Taiwan[J]. J Volcanol Geoth Res, 2007, 165(1): 32-45.
黄荣辉. 大气科学概论[M]. 北京: 气象出版社, 2005: 15.
王明星. 现代大气科学丛书: 大气化学概论[M]. 北京: 气象出版社, 2005: 6.
FIEBIG J, CHIODINI G, CALIRO S, et al. Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatic -hydrothermal systems[J]. Geochim Cosmochim Acta, 2004, 68(10): 2321-2334.
LIU C M, SONG S R, CHEN Y L, et al. Characteristics and origins of hot springs in the Tatun Volcano Group in northern Taiwan[J]. Terr Atmos Ocean Sci, 2011, 22(5): 475-489.
BROMBACH T, CALIRO S, CHIODINI G, et al. Geochemical evidence for mixing of magmatic fluids with seawater, Nisyros hydrothermal system, Greece[J]. B Volcanol, 2003, 65(7): 505-516.
LEE H F, YANG T F, LAN T F, et al. Temporal variations of gas compositions of fumaroles in the Tatun Volcano Group, northern Taiwan[J]. J Volcanol Geoth Res, 2008, 178(4): 624-635.
TESCHNER M, FABER E, POGGENBURG J, et al. Continuous, direct gas-geochemical monitoring in hydrothermal vents: Installation and long-term operation on Nisyros Island (Greece)[J]. Pure Appl Geophys, 2007, 164(12): 2549-2571.
ORLANDO V, FRANCO T, DARIO T, et al. Submarine and inland gas discharges from the Campi Flegrei (Southern Italy) and the Pozzuoli Bay: Geochemical clues for a common hydrothermal-magmatic source[J]. Procedia Earth Planet Sci, 2011, 4: 57-73.
DARLING W G, GRIESSHABER E, ANDREWS J N, et al. The origin of hydrothermal and other gases in the Kenya Rift Valley[J]. Geochim Cosmochim Acta, 1995, 59(12): 2501-2512.
CAPASSO G, FAVARA R, INGUAGGIATO S. Chemical features and isotopic composition of gaseous manifestations on Vulcano Island, Aeolian Islands, Italy: An interpretative model of fluid circulation[J]. Geochim Cosmochim Acta, 1997, 61(16): 3425-3440.
EVANS W C, WHITE L D, RAPP J B. Geochemistry of some gases in hydrothermal fluids from the southern Juan de Fuca Ridge[J]. J Geophys Res, 1988, 93(B12): 15305-15313.
GIGGENBACH W F, SANO Y, WAKITA H. Isotopic composition of helium, and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary[J]. Geochim Cosmochim Acra, 1993, 57: 3427-3455.
/
〈 |
|
〉 |