Marine Environment Protection

Study on flux of nitrogen and phosphorus across the interface of sediment-water and their diffusion areas in seawater at the aquaculture region of Daya Bay

  • CHENG Xiang-ju ,
  • GUO Zhen-ren ,
  • LIU Guo ,
  • LI Bin
Expand
  • 1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China; 2. South China Institute of Environmental Sciences, Ministry of environmental protection, Guangzhou 510655, China; 3. School of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu 610059, China

Received date: 2013-09-25

  Revised date: 2014-03-06

  Online published: 2014-08-11

Abstract

In order to better track the effect of marine culture in floating cage on water quality, the sediments of three representative sites in the aquaculture area of Daya Bay were sampled in October 2011. The water percentage, porosity percentage and density of sediments, and the vertical distributions of nitrogen and phosphorus in the interstitial water were measured in laboratory experiments. The release rate and yearly release quantity of nutrients at the sediment-water interface were calculated by means of Fick’s Law. Based on the theory of environmental hydraulics, a two-dimensional numerical model was applied to calculate diffusion regularities of the nutrients. The results show that, the yearly release contents of ammonia across the interface of sediment-water at Aotou, Shenshuigang and Hutoumen were 13.5, 5.2, 0.56 t·a-1, and that of dissolved reactive phosphorus were 0.34, 0.03, 0.02 t·a-1, respectively. The release fluxes were high enough to make the sediments close to the aquaculture area become a potential pollution source. The released nutrients from the sediment-water interface were affected by tidal flow, wind, and depth, and the diffusion region in seawater had a strip shape. The pollution belt was about 1 km in length and 50 m in width at each sampled site of the aquaculture area, which made eutrophication a potential risk to the water body.

Cite this article

CHENG Xiang-ju , GUO Zhen-ren , LIU Guo , LI Bin . Study on flux of nitrogen and phosphorus across the interface of sediment-water and their diffusion areas in seawater at the aquaculture region of Daya Bay[J]. Journal of Tropical Oceanography, 2014 , 33(4) : 77 -84 . DOI: 10.11978/j.issn.1009-5470.2014.04.010

References

董慧, 郑西来, 张健. 2012. 河口沉积物孔隙水营养盐分布特征及扩散通量[J]. 水科学进展, 23(6): 815–821.
龚春生, 姚琪, 范成新, 等. 2006. 城市潜水型湖泊底泥释放磷的通量估算—以南京玄武湖为例[J]. 湖泊科学, 18(2): 179–183.
国家海洋环境监测中心. 2007. GB 17378.4-2007海洋监测规范 第4部分:海水分析[S]. 北京: 中国标准出版社: 100-120.
国家海洋局第三海洋研究所, 青岛海洋大学. 1997. GB 3097-1997海水水质标准[S]. 北京: 中国标准出版社: 1-10.
郭卫东, 章小明, 杨逸萍, 等. 1998. 中国近岸海域潜在性富营养化程度的评价[J]. 台湾海峡, 17(1): 64–70.
黄小平, 郭芳, 黄道建. 2008. 大亚湾典型养殖区沉积物-海水界面营养盐扩散通量及其环境意义[J]. 海洋环境科学, 27(增刊2): 6–12.
李宝, 丁士明, 范成新, 等. 2008. 滇池福保湾底泥内源氮磷营养盐释放通量估算[J]. 环境科学, 29(1): 114–115.
李大美, 黄克中. 2007. 环境水力学[M]. 武汉: 武汉大学出版社: 41–80.
李锦蓉, 吕颂辉, 梁松. 1993. 大鹏湾、大亚湾营养盐含量与赤潮生物关系的初探[J]. 海洋通报, 12(2): 23–29.
李鑫, 赵林, 马凯, 等. 2012. 青年湖沉积物中氮赋存形态的季节性变化[J]. 环境科学研究, 25(2): 140–145.
刘云旭, 温伟英, 王文介. 1999. 大亚湾海域物理自净能力的时空差异性研究[J]. 热带海洋, 18(4): 61–68.
潘齐坤, 罗专溪, 邱昭政, 等. 2011. 九龙江口湿地表层沉积物氮的形态分布特征[J]. 环境科学研究, 24(6): 673–678.
沈海维. 2002. 大亚湾表层沉积物中氮和磷的生物可利用性研究[D]. 厦门: 厦门大学: 7–50.
王聪, 林军, 陈丕茂, 等. 2009. 年平均风场作用下大亚湾水交换的数值模拟[J]. 上海海洋大学学报, 18(3): 351-358.
吴持恭. 2007. 水力学: 上册[M]. 北京: 高等教育出版社, 4版: 347–351.
张鸿星, 褚君达. 2003. 潮汐河口污染带影响因素研究[J]. 水资源保护, 19(5): 35–62.
BOSTROM B, ANDERSEN J M, FLEISCHER S, et al. 1988. Exchange of phosphorus across the sediment-water interface [J]. Hydrobiologia, 170(48): 229–244.
CARROLIM L, COCHRAN E, FIELER R, et al. 2003. Organic enrichment of sediments from salmon farming in Norway: environmental factors, management practices and monitoring techniques [J]. Aquaculture, 226(4): 165–180.
FEAR J M. 2003. The influence of sediment oxygen demand and denitrification on Nitrogen cycling in the eutrophic Neuse River estuary, USA [D]. Chapel Hill: The University of North Carolina: 60?64.
HENDERSON-SELLERS B, MARKLAND H R. 1987. Decaying lakes: The origins and control of cultural eutrophication[M]. Chichester, Great Britain: John Wiley and Sons: 5–153.
MACLEOD C K, CRAWFORD C M, MOLTSCHANIWSKYJ N A. 2004. Assessment of long term change in sediment condition after organic enrichment defining recovery [J]. Marine Pollution Bulletin, 49(1): 79–88.
STEINBERGER N, HONDZO M. 1999. Diffusional mass transfer at sediment-water interface [J]. Journal of environmental engineering, 125(2): 192–200.
ULLMAN W J. 1982. Diffusion coefficients in near-shore marine sediments [J]. Limnology and Oceanography, 27(3): 552–556.

Outlines

/