Marine Biology

Allelopathic effects of green tide algae Ulva prolifera on red tide algae Skeletonema costatum

  • CUI Feng ,
  • TU Wen-bin ,
  • WANG Yi-bing ,
  • WU Hai-long ,
  • ZHANG Jian-heng ,
  • HUO Yuan-zi ,
  • JIA Rui ,
  • HE Pei-min
Expand
  • Shanghai Ocean University, Institute of Marine Science, Shanghai 201306, China

Received date: 2013-10-13

  Revised date: 2014-03-14

  Online published: 2014-09-29

Abstract

Allelopathic effects of green tide alga Ulva prolifera on the proliferation of red tide algae Skeletonema costatum were studied. The fresh tissue, dry powder and culture medium filtrate of U. prolifera were used for inhibiting the proliferation of S. costatum. Results showed that the fresh tissue of U. prolifera could inhibit significantly the proliferation of S. costatun. In all groups with the fresh tissue, the inhibition rate was as high as 100% after co-culturing for 12 days. As for the groups with the dry powder, the inhibition rate in the 1.2 g·L-1 group reached 50% after co-culturing for 12 days. It indicated that the inhibition of green tide algae on S. costatun proliferation presented a concentration-response relationship, and that there was not only nutrient competition inhibitory but also allelochemicals inhibition. Further studies showed that there was no significant inhibition of culture medium filtrate on the proliferation of S. costatum in the experiment with one-time adding culture medium filtrate of U. prolifera, while the proliferation of S. costatum was significantly inhibited in the experiment with semi-continuously adding culture medium filtrate of U. prolifera. The inhibition rate for semi-continuously adding culture medium filtrate of U. prolifera was 75% after culturing for 12 days. It indicated that allelochemicals in U. prolifera was gradually released to the environment. This research laid a solid foundation for further research on concentration-response relationship between U. prolifera and S. costatum.

Cite this article

CUI Feng , TU Wen-bin , WANG Yi-bing , WU Hai-long , ZHANG Jian-heng , HUO Yuan-zi , JIA Rui , HE Pei-min . Allelopathic effects of green tide algae Ulva prolifera on red tide algae Skeletonema costatum[J]. Journal of Tropical Oceanography, 2014 , 33(5) : 28 -34 . DOI: 10.11978/j.issn.1009-5470.2014.05.004

References

[1] 李峰民, 李媛媛, 等. 2011. 六种大型藻浸提液对中肋骨条藻的抑制及活性成分分离[J]. 中国海洋大学学报, 41(7): 107–112.
[2] 何培民. 2013. 我国海洋富营养化趋势与生态修复策略[J]. 科学, 65(4): 48–52.
[3] 2000~2007. 中国海洋环境质量公报[R]. http://www. coi.gov.cn/gongbao/huanjing/
[4] 2005~2012. 中国海洋环境质量公报[R]. http://www. coi.gov.cn/gongbao/huanjing/
[5] 田千桃, 何培民, 等. 2010. 浒苔对米氏凯伦藻生长的克生作用[J]. 海洋环境科学, 29(4): 496–499.
[6] 彭文蕾, 蔡春尔, 等. 2012a. 缘管浒苔对利玛原甲藻生长的克生作用[J]. 海洋环境科学, 31(4): 479–483.
[7] 吴敏, 蔡春尔, 等. 2012b. 浒苔对赤潮异湾藻的克生作用[J]. 水产学报, 36(4): 562–567.
[8] 2010. 肠浒苔中抑藻活性物质的分离鉴定及其对赤潮藻的影响[D]. 宁波: 宁波大学: 20–24.
[9] 史致丽, 李俊, 等. 2000. 营养盐对中肋骨条藻和新月菱形藻部分生化组成和性质的影响[J]. 海洋与湖沼, 31(3) : 239–245.
[10] 董双林. 2004. 氮饥饿细基江蓠繁枝变型和孔石莼氨氮的吸收动力学特征[J]. 海洋学报, 26(2): 95–102.
[11] 孙雪, 徐年军, 等. 2011. 龙须菜对赤潮藻的生长抑制效应及其与环境因子的关系[J]. 海洋学研究, 29(2): 100–106.
[12] 袁东星, 林泗彬,等. 2003. 江蓠对赤潮消亡及主要水质指标的影响[J]. 海洋环境科学, 22(2): 24–27.
[13] 游秀萍, 林亚森, 等. 2005. 龙须菜对富营养化海水的生物修复[J]. 生态学报, 25(11): 3046–3051.
[14] 徐姗楠, 何文辉, 等. 2007. 海洋大型绿藻条浒苔与微藻三角褐指藻相生相克作用的研究[J]. 海洋渔业, 29(2): 103–108.
[15] 俞志明, 宋秀贤, 等. 2006. 共培养体系中石莼和江蓠对赤潮异弯藻生长的影响[J]. 环境科学, 27(2): 246–252.
[16] 何培民. 2006. 我国赤潮频发现象分析与海藻栽培生物修复作用[J]. 水产学报, 30(4): 554–561.
[17] 董双林, 金秋. 2005. 几种大型海藻对赤潮异弯藻生长抑制效应的初步研究[J]. 中国海洋大学学报: 自然科学版, 35(3): 475–477.
[18] 黄小平, 黄良民, 等. 2004. 大型藻类净化养殖水体的初步研究[J]. 海洋环境科学, 23(1): 13–15.
[19] 霍元子, 王阳阳, 等. 2011. 浒苔与球等鞭金藻相互抑制的实验验证[J]. 上海海洋大学学报, 20(2): 211–216.
[20] 宋秀贤, 王悠, 等. 2005a. 大型海藻龙须菜与锥状斯氏藻间的营养竞争研究[J]. 海洋与湖沼, 36(6): 556–561.
[21] 俞志明, 宋秀贤, 等. 2005b. 大型海藻龙须菜与东海原甲藻间的营养竞争[J]. 生态学报, 25(10): 2676–2780.
[22] D M. 1997. Turning back the harmful red tide [J]. Nature, 38(8): 513–514.
[23] R R, SIMARD R R, LEROUX G D. 1994. Effects of benzonic and cinnamic on growth, mineral composition and chlorophyll content of soybean [J]. Chem and Ecol, 20: 2821–2833.
[24] P, DONOHOE R M, ZEDLER J B. 1993. Competition with macroalgae and benthic cyanobacterial mats limits phyto-plankton abundance in experimental microcosms [J]. Mar Ecol Prog Ser, 100: 97–102.
[25] E M, SUTFELD R. 1994. Polyphenols with algicidal activity in the submerged macrophyte Myriophyllumspicatum L [J]. Acta Hort, 381: 710–716.
[26] E M, MEYER H, SCHILLING G. 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum [J]. Phytochemistry. 41(1): 133–138.
[27] E M. 2003. Allelopathy of aquatic autotrophs [J]. Critical Reviews in Plant Sciences, 22: 313–339.
[28] J H, JIN H J. 2000. Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae [J]. J Appl Phycol, 12(1): 37–43.
[29] PENG, WANG JINFENG, CUI YULIN, et al. 2008. Molecular phytogenetic analysis of attached Ulvaceae species and free-floating Enteromorpha from Qingdao coasts in 2007 [J]. Chin J Oceanol Limnol, 26(3): 276–279.
[30] QIU, DONG SHUANGLIN. 2003. Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense [J]. J Exp Mar Biol Ecol, 293(1): 41–55.
[31] H, ASARI F, KUSUMI T, et al. 1988. An allelopathic fatty acid from the brown alga Cladosiphonokamuranus [J]. Phytochemistry, 27(3): 731–735.
[32] S, NICKLISCH A. 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes [J]. J Phycol, 3(8): 862–871.
[33] G M, WRIGHT D L. 1999. Plocamiumhamatum and its monoterpenes: Chemical and biological investigation of the tropical marine red alga [J]. Phytochemistry, 52(6): 1047–1053.
[34] DONGYAN, KEESING J K, DONG ZHIJUN, et al. 2010. Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms [J]. Mar Pollut Bull, 60(9): 1423–1432.
[35] CHUNRONG, ZHANG HAIZHI, ZHAO GUANGQIANG. 2004. Allelopathic interactions between the macroalga Ulva pertusa and eight microalgal species [J]. J Sea Res, 52(4): 259–268.
[36] CHUNRONG, ZHANG HAIZHI, LIN SHAOZHEN, et al. 2008. Allelopathic effects of Ulvalactuca on selected species of harmful bloom-forming microalgae in laboratory cultures [J]. Aquat Bot, 89(1): 9–15.
[37] A, PAVONI B, MARCOMINI A. 1989. Macroalgae and phytoplankton standing crops in the central Venice lagoon: Primary production and nutrient balance [J]. Sci Total Environ, 80(2/3): 139–159.
[38] A, PAVONI B. 1994. Macroalgae and phytoplankton competition in the central Venice lagoon [J]. Environ Technol, 15: 1–14.
[39] D W, HORNE A J. 1988. Experimental measurement of resource competition between planktonic microalgae and macroalgae (seaweeds) in mesocosms simulating the San Francisco Bay-Estuary, California [J]. Hydrobiologia, 159: 259–268.
[40] SONG, WANG FAN, LI CHAOLUN, et al. 2008. Emerging challenges massive green algae blooms in the Yellow Sea [J]. Nature Preceedings, hdl: 10101/npre.2008.2266.1
[41] M, WAKANA I, DENBOH T, et al. 1996. An allelopathic polyunsaturated fatty acid from red algae [J]. Phtochemistry, 43(1): 63–65.
[42] Y, TAKABAYASHI T, KAWAGUCHI T. 1998. Isolation of an allelopathic substance from the crustose coralline algae, Lithophyllum spp. , and its effect on the brown alga, Laminariareligiosa Miyabe (Phaeophyta) [J]. J Exp Mar Biol Ecol, 225: 69–77.
[43] RENJUN, XIAO HUI, WANG YOU, et al. 2007. Effects of three macroalgae, Ulvalinza (Chlorophyta), Corallinapilulifera (Rhodophyta) and Sargassumthunbergii (Phaeophyta) on the growth of the red tide microalga Prorocentrumdonghaiense under laboratory conditions [J]. J Sea Res, 58(3): 189–197.
[44] M, SCHMELLER T, LATZ-BRUNING B. 1998. Modes of action of allelochemicals alkaloida: Interaction with neuro-receptors DNA and other molecular targets [J]. Chem Ecol, 24(11): 1881–1937.
Outlines

/