Marine Geophysics

The selection of optimal inversion parameters for first-arrival seismic tomography: An application to 3D seismic data from the central sub-basin of the South China Sea

  • WANG Jian ,
  • ZHAO Ming-hui ,
  • HE En-yuan ,
  • ZHANG Jia-zheng ,
  • QIU Xue-lin
Expand
  • 1. Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 2. University of Chinese Academy of Sciences, Beijing 10049, China

Received date: 2013-12-31

  Revised date: 2014-03-28

  Online published: 2014-09-29

Abstract

First arrival seismic tomography (FAST) is one of the most widely used seismic tomography tools to achieve complicated three-dimensional (3D) deep crustal structure. The selection of optimal inversion parameters for FAST is a key to obtain a reasonable velocity model effectively. Based on the 3D seismic survey data collected from the central sub-basin of the South China Sea (SCS), the selection process of inversion parameters was illustrated in detail in this paper, using the control variate method, namely, selecting one parameter while fixing the other parameters, and then selecting the combination of all parameters comprehensively. The result showed that the combination of parameters (damping parameter λ=2, smoothness weighting parameter sz=1, inversion number I=4) was an assembly of optimal inversion parameters for the 3D seismic structure of the central sub-basin of the SCS. The preferred preliminary velocity structure acquired by this combination indicated that the central sub-basin could be classified as a typical slow-spreading oceanic crust. The research of choosing inversion parameters not only lays a foundation for further modeling of detailed 3D seismic structure of the Zhenbei-Huangyan seamount chain but also provides reference and experience for the application of FAST software in other potential areas.

Cite this article

WANG Jian , ZHAO Ming-hui , HE En-yuan , ZHANG Jia-zheng , QIU Xue-lin . The selection of optimal inversion parameters for first-arrival seismic tomography: An application to 3D seismic data from the central sub-basin of the South China Sea[J]. Journal of Tropical Oceanography, 2014 , 33(5) : 74 -83 . DOI: 10.11978/j.issn.1009-5470.2014.05.010

References

[1] 2012. 初至波旅行时层析成像(FAST)方法研究和应用[D]. 兰州: 中国地震局兰州地震研究所: 34–46.
[2] 赵明辉, 叶春明, 等. 2003. 南海东北部海陆联测与海底地震仪探测[J]. 大地构造与成矿学, 27(4): 295–300.
[3] 赵明辉, 徐辉龙, 等. 2012. 南海深地震探测的重要科学进程:回顾和展望[J]. 热带海洋学报, 31(3): 1–8.
[4] 万玲, 曾维军, 等. 2006. 中国南海海域岩石圈三维结构及演化[M]. 北京: 地质出版社: 52–53.
[5] 丘学林, 徐辉龙, 等. 2011. 南海南部深地震探测及南北共轭陆缘对比[J]. 地球科学: 中国地质大学学报, 36(5): 823–830.
[6] 赵明辉, 王建, 等. 2013. 南海中央次海盆OBS位置校正及三维地震探测新进展[J]. 地球科学: 中国地质大学学报, 8(1): 33–42.
[7] K, LEE W. 1976. Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model [J]. J Geophys Res, 81(23): 4381–4399.
[8] A, PATRIAT P, TAPPONNIER P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia [J]. J Geophys Res, 98(B4): 6299–6328.
[9] J W, SINGH S C, MIMSHULL T A. 2003. Three- dimensional tomographic inversion of combined reflection and refraction seismic traveltime data [J]. Geophys J Int, 152(1): 79–93.
[10] J A, ZELT B C. 1995. 3-D finite-difference reflection traveltimes [J]. Geophys J Int, 121(2): 427–434.
[11] K, NAKAMURA Y, WANG TK, et al. 2005. Crustal-scale seismic profiles across Taiwan and the western Philippine Sea [J]. Tectonophysics, 401(1): 23–54.
[12] C C, SAUNDERS M A. 1982. LSQR: An algorithm for sparse linear equations and sparse least squares [J]. ACM Trans Math Softw, 8(1): 43–71.
[13] K, DOSSO S, SPENCE G, et al. 2005. Forearc structure beneath southwestern British Columbia: A three-dimensional tomographic velocity model [J]. J Geophys Res, 110(B2). doi:10.1029/2004JB003258.
[14] K, HYNDMAN R, BROCHER T. 2006. Regional P wave velocity structure of the Northern Cascadia Subduction Zone [J]. J Geophys Res, 111(B12). doi:10.1029/ 2005JB004108.
[15] J I, JUHLIN C, BERGMAN B. 2006. First arrival seismic tomography (FAST) vs. PStomo_eq applied to crooked line seismic data from the Siljan ring area [J]. Comput Geosci, 32(4): 497–511.
[16] J E. 1988. Finite-difference calculation of travel times [J]. Bull Seismol Soc Am, 78(6): 2062–2076.
[17] J E. 1990. Finite-difference calculation of traveltimes in three dimensions [J]. Geophysics, 55(5): 521–526.
[18] R S, MCKENZIE D, O'NIONS R K. 1992. Oceanic crustal thickness from seismic measurements and rare earth[18] element inversions [J]. J Geophys Res, 97(B13): 19683– 19715.
[19] MIN, CANALES J P, TUCHOLKE B E, et al. 2009. Heterogeneous seismic velocity structure of the upper lithosphere at Kane oceanic core complex, Mid-Atlantic Ridge [J]. Geochem Geophys Geosyst, 10(10). doi:10.1029/ 2009GC002586.
[20] C A, BARTON P J. 1998. Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faeroe Basin [J]. J Geophys Res, 103(B4): 7187–7210.
[21] MINGHUI, CANALES J P, SOHN R A. 2012. Three- dimensional seismic structure of a Mid-Atlantic Ridge segment characterized by active detachment faulting (Trans- Atlantic Geotraverse, 25°55°N-26°20°N) [J]. Geochem Geophys Geosyst, 13(1). doi:10.1029/2012GC004454.
Outlines

/