Marine Biology

Physiological responses of three species of Pyropia thallus to high temperature stress

  • CHEN Wei-zhou1 ,
  • XU Jun-bin1 ,
  • WU Wen-ting1 ,
  • JIANG Hong-xia2 ,
  • ZHU Jian-yi2 ,
  • LU Qin-qin3
Expand
  • 1. Marine Biology Institute, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China;
    2. Changshu Institute of Technology, Changshu 215500, China;
    3. Institute of Oceanology and Marine Fisheries of Jiangsu, Nantong 226007, China

Received date: 2014-02-08

  Revised date: 2014-05-06

  Online published: 2015-02-10

Abstract

Physiological responses to high temperature stress of the thalli of Pyropia dentata, P. haitanensis and P. crispata, which were commonly distributed in South China, were studied by measuring the content of chlorophyll a, carotenoids, phycoerythrin and phycocyanin, the yield of photochemical efficiency, the capacity of total antioxidant, and the scavenging rate of diphenyl picrylhydrazyl (DPPH)radical. Results showed that the content of pigments declined due to high temperature stress, and the thalli became red, white and transparent gradually. Pyropia thallus’ photosynthetic efficiency (maximal photochemical quantum yield and actual photochemical quantum yield) decreased under high temperature stress, especially under 29℃ and 32℃. Being under high temperature stress for a long time (>3d) also resulted in decreases of total antioxidant capacity and DPPH radical scavenging rate. P. haitanensis and P. dentata began to die when they were stressed under 32℃ for three days, and P. crispata could not survive under 32℃ for six days. P. crispata had the strongest resistance to high temperature stress followed by P. dentata, while P. haitanensis was the most sensitive one. Thus, P. crispata and P. dentata had the potential and advantages in extension of cultivation in South China.

Cite this article

CHEN Wei-zhou1 , XU Jun-bin1 , WU Wen-ting1 , JIANG Hong-xia2 , ZHU Jian-yi2 , LU Qin-qin3 . Physiological responses of three species of Pyropia thallus to high temperature stress[J]. Journal of Tropical Oceanography, 2015 , 34(1) : 49 -55 . DOI: 10.11978/j.issn.1009-5470.2015.01.007

References

[1] .陈培琴, 郁松林, 詹妍妮, 等. 2006. 植物在高温胁迫下的生理研究进展[J]. 中国农学通报, 22(5): 223-227.
[2] .陈伟洲, 吴文婷, 金玉林, 等. 2013. 不同生态因子对皱紫菜生长及生理组分的影响[J].南方水产科学, 9(2): 14-19.
[3] .吕钟钟, 罗建光, 管华诗. 2009. 紫菜的生物活性研究进展[J]. 中国海洋大学学报: 自然科学版, 39(S1): 47-51.
[4] .鹿宁, 臧晓南, 张学成, 等. 2010. 高温胁迫下不同龙须菜品系抗氧化能力的比较[J]. 武汉大学学报: 理学版, 56(5): 570-577.
[5] .潘瑞炽. 2001. 植物生理学: 4版[M]. 北京: 高等教育出版社: 57-66.
[6] .许大全, 张玉忠, 张荣铣. 1992. 植物光合作用光抑制[J]. 植物生理学通讯, 28(4): 237-243.
[7] .许俊宾, 陈伟洲, 宋志民, 等. 2013. 不同培养条件对长紫菜叶状体生长及生理响应的研究[J].水产学报, 37(9): 1319-1327.
[8] .杨锐, 张晓龙, 徐丽宁, 等. 2007. 坛紫菜耐高温胁迫机理之初步研究[C]. 呼和浩特: 中国海洋湖沼学会藻类学分会第七届会员大会暨第十四次学术讨论会论文摘要集: 173.
[9] .尹永强, 胡建斌, 邓明军. 2007. 植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J].中国农学通报, 23(1): 105-110.
[10] .张学成, 秦松, 马家海, 等. 2005. 海藻遗传学[M]. 北京: 中国农业出版社: 185-190.
[11] .张元, 谢潮添, 陈昌生, 等. 2011. 高温胁迫下坛紫菜叶状体的生理响应[J].水产学报, 35(3): 379-386.
[12] .赵小波, 张学成, 许璞. 2010. 不同条件下条斑紫菜光合效率的比较研究[J]. 海洋通报, 29(6): 623-628.
[13] .郑德勇, 安鑫南. 2005. 竹叶提取物清除DPPH自由基的测定方法[J]. 福建农林大学学报: 自然科学版, 34(1): 59-62.
[14] .BEER S, ESHEL A. 1985. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae[J]. Australian Journal of Marine and Freshwater Research, 36(6): 785-792.
[15] .BERRY J, BJORKMAN O. 1980. Photosynthesis response and adaption to temperature in higher plants[J]. Annual Review of Plant Physiology, 31(0): 491-543.
[16] .CHOW W S. 1994. Photoprotection and photoihibitiory damage[C] // BARBER J. Molecular Processes of Photosynthesis. Stamford: JAI Press: 151-196.
[17] .DAVISON I R, PEARSON G A. 1996. Stress tolerance in intertidal seaweeds[J]. Journal of Phycology, 32(2): 197-211.
[18] .FIGUEROA F L, SALLES S, AGUILERA J, et al. 1997. Effects of radiation on photoinhibition and pigmentation in the red alga Porphyra leucosticta [J]. Marine Ecology Progress Series, 151(6): 81-90.
[19] .JIANG H X, WANG Y X, ZHU J Y. 2013. Comparative studies on pigments and photosynthetic characteristics of sexually different vegetative and reproductive tissues of Porphyra katadai var. hemiphylla (Bangiales, Rhodophyta)[J]. Journal of Applied Phycology , 25(1): 73-79.
[20] .KATZ S, KIZNER Z, DUBINSKY Z, et al. 2000. Responses of Porphyra linearis (Rhodophyta) to environmental factors under controlled culture conditions[J]. Journal of Applied Phycology, 12(3/4/5): 535-542.
[21] .KIIBLER J E, DAVISON I R. 1993. High-temperature tolerance of photosynthesis in the red alga Chondrus crispus [J]. Marine Biology, 117(2): 327-335.
[22] .KIM N G. 1999. Culture studies of Porphyra dentata and P . pseudolinearis (Bangiales, Rhodophyta), two dioecious species from Korea[J]. Hydrobiologia, 398/399(0): 127-135.
[23] .KIM G K, KRAEMER G P, NEEFUS C D, et al. 2007. Effects of temperature and ammonium on growth, pigment production and nitrogen uptake by four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast[J]. Journal of Applied Phycology, 19(5): 431-440.
[24] .LORETTO C P, DANIELA T, VERÓNICA F, et al. 2011. Tolerance to oxidative stress induced by desiccation in Porphyra columbina (Bangiales, Rhodophyta)[J]. Journal of Experimental Botany, 62(6): 1815-1829.
[25] .MAYALEN Z, DANIEL R, YOLANDA F. 2007. Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico[J]. Journal of Applied Phycology, 19(5): 449-458.
[26] .NODA H. 1993. Health benefits and nutritional properties of nori[J]. Journal of Applied Phycology, 5(2): 255- 258.
[27] .PARSONS T R, STRICKLAND J D H. 1963. Discussion of spectrophotometric determination of marine plant pigments, with revised equation for ascertaining chlorophylls and carotenoids[J]. Journal of Marine Research, 21(3): 155-163.
[28] .PORRA R J. 2002. The chequered history of the development and use of simultaneous equations for the determination of chlorophylls a and b[J]. Photosynth Research, 73(1/2/3): 149-156.
[29] .ROMAY C, GONZÁLEZ R, LEDÓN N, et al. 2003. C-phycocyanin, a biliprotein with antioxidant, anti-Inflammatory and neuroprotective effects[J]. Current Protein and Peptide Science, 4(3): 207-216.
[30] .SCHREIBER U, BILGER W, NEUBAUER C. 1995. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis[C]// SCHULZE E D, CALDWELL M M. Ecophysiology of Photosynthesis. Berlin: Springer- Verlag: 49-70.
[31] .SECKBACH J, CHAPMAN D J. 2010. Red algae in the genomic age[C]// ISRAEL A. The Extreme Environments of Porphyra, a Fast Growing and Edible Red Marine Macroalga. Holland: Springer Netherlands: 61-75.
[32] .SHAO H B, JIANG S Y, LI F M, et al. 2007. Some advances in plant stress physiology and their implications in the systems biology era[J]. Colloids and Surfaces B , 54(1): 33-36.
[33] .SIES H. 1993. Strategies of antioxidant defense[J]. European Journal of Biochemistry, 215(2): 213-219.
[34] .SUTHERLAND J E, LINDSTROM S C, NELSON W A, et al. 2011. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta)[J]. Journal of Phycology, 47(5): 1131-1151.
[35] .WU T M, LEE T M. Regulation of activity and gene expression of antioxidant enzymes in Ulva fasciata Delile (Ulvale, chlorophyta) in response to excess copper[J]. Phycologia, 2008, 47(4): 346-360.
[36] .YAMAMOTO M. WATANABE Y, KINOSHITA H. 1991. Effects of water temperature on the growth of red alga Porphyra yezoensis form. Narawaensis ( Nori ) cultivated in an outdoor raceway tank[J]. Nippon Suisan Gakkaishi, 57(12): 2211-2217.
[37] .YAMANE Y, KASHINO Y, KOIKE H, et al. 1998. Effects of high temperatures on the photosynthetic systems in spinach: oxygen-evolving activities, fluorescence characteristics and the denaturation process[J]. Photosynthesis Research, 57(1): 51-59.
[38] .ZHANG T, SHEN Z G, XU P, et al. 2012. Analysis of photosynthetic pigments and chlorophyll fluorescence characteristics of different strains of Porphyra yezoensis [J]. Journal of Applied Phycology, 24(4): 881-886.
Outlines

/