Reliability analysis of marine monitoring buoy in the Xiangshan Harbor during Typhoon Haikui (1211)

Expand
  • 1. Marine Monitoring & Forecasting Center of Zhejiang Province, Hangzhou 310007, China;
    2. Ningbo Marine & Fisheries Information Monitoring Center, Ningbo 315010, China;
    3. Zhejiang Fisheries Technical Extension Center, Hangzhou 310012, China;
    4. Zhejiang Province Academy of Marine Sciences, Hangzhou 310012, China

Received date: 2014-03-07

  Revised date: 2014-06-18

  Online published: 2015-04-12

Abstract

Typhoon Haikui (1211) was the first typhoon that made landfall in Zhejiang province since 2009, which was also the strongest landfall typhoon in China in 2012. After touch-down in the Xiangshan coast, Typhoon Haikui moved to the northwest slowly, and crossed the Xiangshan Harbor. There was a marine monitoring buoy in the Xiangshan Harbor. Using the data of meteorological and water quality parameters collected by the marine monitoring buoy, we analyzed the reliability of the marine monitoring buoy in the Xiangshan Harbor during Typhoon Haikui. The results showed that during the influence of Typhoon Haikui, the water temperature dropped due to a near-inertial oscillation, which generated by the wind stress in the Xiangshan Harbor. The air temperature, pH and dissolved oxygen content collected by the marine monitoring buoy showed little change. The air pressure continued to decline until two hours after the landfall. Wind and rainfall fluctuated. Due to the heavy rainfall brought by Typhoon Haikui, the amount of water, water depth and water turbidity increased due to runoff; the water temperature dropped; and the salinity decreased. Typhoon Haikui weakened slowly after the landfall, and one of the main reasons for the weakening was the terrains in Jiangsu, Zhejiang and Anhui provinces. The near-inertial oscillation with a shorter duration was not sufficient to cause a large position change of the marine monitoring buoy.During the typhoon event, the buoy basically remained in its position. The marine monitoring buoy whose ability to resist typhoon met the design requirements functioned as a relatively stable real-time monitoring system.

Cite this article

ZHAO Cong-jiao, FENG Hui-qiang, ZHU Xiang-yu, ZHOU Yan . Reliability analysis of marine monitoring buoy in the Xiangshan Harbor during Typhoon Haikui (1211)[J]. Journal of Tropical Oceanography, 2015 , 34(2) : 8 -14 . DOI: 10.11978/j.issn.1009-5470.2015.02.002

References

1 董克勤, 李曾中. 1980. 海南岛地形对过岛台风影响的初步研 究[J]. 大气科学, 4(3): 288-292.
2 范玉芬, 王志鹏, 陆陈建. 2012. “海葵”台风浙江降水的特点分析与预报检验[C]//第九届长三角气象科技论坛论文集. 镇江: 浙江省气象学会: 177-181.
3 翰林生, 高佳, 郭俊如, 等. 2012. 上层海洋对热带气旋的响应与反馈研究进展[J]. 海洋通报, 31(2): 232-239.
4 李家芳, 冯应俊, 蔡伟章, 等. 1985. 象山港海洋自然环境分析及其开发利用前景[J]. 海洋环境科学, 4(1): 18-25.
5 廖廓, 蔡晓禾, 曾瑾瑜. 2013. “海葵”台风路径及其强度分 析[J]. 闽江学院学报, 34(2): 128-131.
6 刘俊. 2007. 关注台风[M]. 北京: 军事科学出版社: 7-9.
7 谭锐志, 梁必骐. 1989. 登陆台风衰减与变性过程的对比研究[J]. 中山大学学报: 自然科学版, 28(4): 15-21.
8 王志春, 宋丽莉, 何秋生, 等. 2007. 风速随高度变化的曲线模型分析[J]. 热带气象学报, 23(6): 690-692.
9 徐家良, 穆海振. 2009. 台风影响下上海近海风场特性的数值模拟分析[J]. 热带气象学报, 25(3): 281-286.
10 张晨晖, 朱佳敏. 2012. “海葵”环流结构与暴雨特征及其与“麦莎”差异分析[C]//第九届长三角气象科技论坛论文集. 镇江: 浙江省气象学会: 154-158.
11 张建海, 于忠凯, 庞盛荣. 2008. 浙江地形对台风Khanun影响的数值试验和机理分析[J]. 科技导报, 26(21): 66-72.
12 张书文, 曹瑞雪, 谢玲玲. 2013. 热带气旋过程中的近惯性振荡解及频散关系[J]. 海洋科学进展, 31(1): 38-42.
13 赵凯, 张银意, 唐红升. 2008. 0515台风“卡努”登陆后强度衰减的诊断分析[J]. 台湾海峡, 27(3): 372-375.
14 浙江省海洋与渔业局. 2013. 2012年浙江省海洋灾害公报[Z]. 杭州: 浙江省海洋与渔业局: 3-4.
15 浙江省水利厅. (2012-09-21)[2013-10-19]. 浙江水利 第11号台风——“海葵”[EB/OL]. 杭州: 浙江省水利厅. http://www. zjwater.gov.cn/pages/category /0767/index_1.htm.
16 中华人民共和国国家质量监督检验检疫总局. 2006. 热带气旋等级[S]. 北京: 中国标准出版社: 1-4.
17 中国台风网.(2011-04-25)[2014-2-19]. 台风强度等级[EB/OL]. http://www.typhoon.gov.cn/index.php? Controller =cms&action= view&pid=133&cid=4234.
18 朱大勇, 李立. 2007. 台风Wayne 过后南海北部陆架海域的近惯性振荡[J]. 热带海洋学报, 26(4): 1-7.
19 CHEN FEI, DU YAN, YAN LI, et al. 2010. Response of upper ocean currents to typhoons at two ADCP moorings west of the Luzon Strait[J]. Chinese Journal of Oceanology and Limnology, 28: 1002-1011.
20 CHEN GENGXIN, XUE HUIJIE, WANG DONGXIAO, et al. 2013. Observed near-inertial kinetic energy in the northwestern South China Sea[J]. Journal of Geophysical Research: Oceans, 118: 4965-4977.
21 CHEN YINGJUN, XIE QIANG, MENG WEIGUANG, et al. 2010. A numerical study of the influence of sea surface temperatures with different temporal resolutions on Typhoon Dujuan over the South China Sea[J]. Journal of Tropical Meteorology, 16(2): 195-200.
22 SUN LU, ZHENG QUAN'AN, WANG DONGXIAO, et al. 2011. A case study of near-inertial oscillation in the South China Sea using mooring observations and satellite altimeter data[J]. Journal of Oceanography, 67: 677-687.
23 SUN LU, ZHENG QUAN’AN, TANG TSWEN-YUNG, et al. 2012. Upper ocean near-inertial response to 1998 Typhoon Faith in the South China Sea[J]. Acta Oceanologica Sinica, 31(2): 25-32.
24 XU XIANGDE, PENG SHIQIU, YANG XIANGJING, et al. 2013. Does warmer China land attract more super typhoons? [R]Scientific Reports, 3: 1-8.
25 YANG LEI, WANG DONGXIAO, PENG SHIQIU. 2012. Comparison between MM5 simulations and satellite measurements during Typhoon Chanchu (2006) in the South China Sea[J]. Acta Oceanologica Sinica, 31(2): 33-44.
Outlines

/