Research on detection of weak passive fish acoustic by sparse decomposition feature

  • CHEN Gong ,
  • WANG Ping-bo ,
  • CHANG Rui ,
  • DU Yu-hua ,
  • YU Hai-ping ,
  • LI Yao-bo
Expand
  • 1. Changzhou Institute of Technology, Changzhou 213022, China;
    2. Naval University of Engineering, Wuhan 430033, China;
    3. Unit No. 92956 of the Chinese Peoples Liberation Army, Dalian 116041, China

Received date: 2014-08-25

  Online published: 2015-08-21

Abstract

To detect and recognize passive fish acoustic signals from noisy marine environment, sparse decomposition is used to realize the endpoint detection by coherent ratio feature. This algorithm extracts feature of fish and wave acoustic as test object under different signal-to-noise (SNR) ratios in the training; feature from noisy signal segment is extracted in the testing to classify test object; finally, it is realized by threshold endpoint detection method. Experimental results show that the algorithm in low SNR can accurately realize effective signal segments, compared with the power spectrum feature extraction algorithm.

Cite this article

CHEN Gong , WANG Ping-bo , CHANG Rui , DU Yu-hua , YU Hai-ping , LI Yao-bo . Research on detection of weak passive fish acoustic by sparse decomposition feature[J]. Journal of Tropical Oceanography, 2015 , 34(4) : 48 -53 . DOI: 10.11978/j.issn.1009-5470.2015.04.006

References

1 陈功, 朱锡芳, 许清泉. 2013. 仿声技术在海洋鱼类被动声信号特征提取中的应用[J]. 海洋技术, 32(3): 50-54.
2 韩立华, 王博, 段淑凤. 2010. 语音端点检测技术研究进展[J].计算机应用研究, 7(4): 1220-1226.
3 任新敏, 高大治, 姚玉玲. 2007. 大黄鱼的发声及信号特性研究[J].大连水产学院学报, 22(2): 123-128.
4 王建英, 尹忠科. 2006. 信号与图像的稀疏分解及初步应用[M]. 成都: 西南交通大学出版社: 1-191.
5 张波. 2009.鱼群声散射模型及其仿真研究[D].哈尔滨:哈尔滨工程大学: 1-72.
6 ABILEAH R, LEWIS D. 1996. Monitoring high-seas fisheries with long-range passive acoustic sensors[C]. Port Lauderdale, FL: OCEANS '96. MTS/IEEE. Prospects for the 21st Century. Conference Proceedings. IEEE, 1: 1917-1924.
7 HAWKINS A D, RASMUSSEN K J. 1978. The calls of gadoid fish[J]. Journal of the Marine Biological Association of the United Kingdom, 58: 891-911.
8 HAWKINS A D, 1986. Underwater sound and fish behaviour[M]// PITCHER T J. The behaviour of teleost fshes. London & Sydney: CROOM HELM: 114-151.
9 HOWELL B P, WOOD S. 2003. Passive sonar recognition and analysis using hybrid neural networks[J]. Oceans, 4: 1917- 1924.
10 LOBEL P S, MANN D A. 1995. Spawning sounds of the damselfish, Dascyllusalbisella (Pomacentridae), and relationship to male size[J]. Bioacoustics, 6(3): 187-198.
11 ROUNTREE R A, GOUDEY C, HAWKINS T, et al. 2002. Listening to Fish[C/OL]. Proceedings of the International Workshopon the Applications of Passive Acoustics to Fisheries. [2014-
12 08-25]. April 8~10. Dedham, MA: MIT Sea Grant Technical Report MITSG 03-2. http://web.mit.edu/seagrant/aqua/cfer/ acoustics/PAprocBrFINAL.pdf
13 ROUNTREE R A, GILMORE R G, GOUDEY C A, et al. 2006. Listening to fish: Applications of passive acoustics to fisheries science[J]. Fisheries, 31(9): 433-446.
14 ROUNTREE R. 2008. Passive acoustics as a tool in fisheries science[J]. Transactions of the American Fisheries Society, 137: 533-541.
15 STOLKIN R, RADHAKRISHNAN S, SUTIN A. 2007. Passive acoustic detection of modulated underwater sounds from biological and anthropogenic sources[C]. Vancouver, BC. OCEANS 2007. IEEE: 1-8.
16 WOOD M, CASARETTO L, HORGAN G, et al. 2002. Discriminating between fish sounds - a wavelet approach[J]. Bioacoustics, 12: 337-339.

Outlines

/