To investigate salinity effects on growth and enzyme activity of juvenile Sepia pharaonis, manipulative laboratory experiments were conducted. These experiments revealed the effects of abrupt and gradual changes of salinity on survival rate, specific growth rate, weight gain rate, hepatosomatic index, and enzyme activity (superoxide dismutase, alkaline phosphatase, glutamic oxaloacetic transaminase, glutamic-pyruvic transaminase). The results showed that abrupt salinity change had significant effects on larval survival rate and behavior after cultivation of 21 days (p<0.05). Optimum survival rates of juvenile cuttlefish were obtained when cultivated at salinity of 24‰ and 27‰ (75.56%±6.94%~77.78%±6.94%). Specific growth rate and weight gain rate were the highest at the salinity of 27‰. The hepatosomatic index increased with salinity increase, and achieved the highest value at the salinity of 30‰. Gradual change of salinity also had significant influence on survival rate, specific growth rate, weight gain rate, hepatosomatic index, and enzyme activity (p<0.05). Optimum survival rate (87.78%±1.92%) was obtained at the salinity of 24‰. Specific growth rate (6.88%•d-1±0.13%•d-1) and weight gain rate (180.96%±5.13%) were the highest at the salinity of 27‰, whilst the highest hepatosomatic index was observed at salinity of 30‰. SOD enzyme activity declined and then increased following the rising of salinity from 18‰ to 33‰, with the lowest value at salinity of 27‰. GOT, GPT and AKP enzyme increased and then decreased; GOT and GPT enzyme activity were the highest when the salinity was 24‰, whereas AKP enzyme reached the maximum value at salinity of 30‰. Therefore, the suitable and optimal salinity values were 21‰~30‰ and 24‰~27‰, respectively, under abrupt salinity change. Suitable and optimal salinity values were 18‰~33‰ and 24‰~27‰, respectively, under gradual salinity change. We concluded that juvenile cuttlefish can live under a wider range of salinity and that we can improve its survival rate with very gradual salinity change.
1 艾春香, 陈立侨, 高露娇, 等. 2002. Vc对河蟹血清和组织中超氧化物歧化酶及磷酸酶活性的影响[J]. 台湾海峡, 21(4): 431-438.
2 蔡文飞, 徐海洪, 陈道海. 2012. 温度对拟目乌贼幼体日生长率和存活率的影响[J]. 氨基酸和生物资源, 34(4): 63-66.
3 陈道海, 王雁, 梁汉青, 等. 2012. 虎斑乌贼( Sepia pharaonis )胚胎发育及孵化历期观察[J]. 海洋与湖沼, 43(2): 394-400.
4 陈道海, 文菁, 赵玉燕, 等. 2014. 野生与人工养殖的虎斑乌贼肌肉营养成分比较[J]. 食品科学, 35(7): 217-222.
5 陈四清, 刘长琳, 庄志猛, 等. 2008. 饵料、盐度对金乌贼幼体生长的影响[J]. 渔业现代化, 35(6): 23-25, 32.
6 陈瑛, 邱子健, 隋淑光, 等. 2003. 棘尾虫酸性磷酸酶的定位及诱导表达[J]. 动物学报, 49(2): 218-233.
7 陈宇锋, 艾春香, 林琼武, 等. 2007. 盐度胁迫对锯缘青蟹血清及组织、器官中PO和SOD活性的影响[J]. 台湾海峡, 26(4): 569-575.
8 戴远棠, 谢晓晖, 黄国光, 等. 2012. 虎斑乌贼幼体对盐度计pH值耐受力的研究[J]. 河北渔业, 226(10): 8-11, 16.
9 高晓兰, 蒋霞敏, 乐可鑫, 等. 2014. 野生虎斑乌贼不同组织营养成分分析及评价[J]. 动物营养学报, 26(12): 3858- 3867.
10 黄建盛, 陈刚, 张健东, 等. 2012. 盐度对虎斑乌贼受精卵孵化及幼体活力的影响[J]. 广东海洋大学学报, 32 (1): 35-38.
11 惠天朝, 施明华, 朱荫媚. 2000. 硒对罗非鱼慢性镉中毒肝抗氧化酶及转氨酶的影响[J]. 中国兽医学报, 20(3): 264-266.
12 乐可鑫, 蒋霞敏, 彭瑞冰, 等. 2014. 4种生态因子对虎斑乌贼幼体生长与存活的影响[J]. 生物学杂志, 31(4): 33-37.
13 刘建勇, 许光林, 简润超, 等. 2010. 温度对虎斑乌贼受精卵孵化及幼体存活的影响[J]. 广东海洋大学学报, 30(6): 87-90.
14 刘伟, 支兵杰, 战培荣. 2010. 盐度对大麻哈鱼幼鱼血液生化指标及肝组织的影响[J]. 应用生态学报, 21(9): 2411-2417.
15 柳旭东, 王际英, 张利民, 等. 2009. 盐度对水产动物生长代谢与生殖发育相关指标影响的研究[J]. 水产养殖, 30(4): 41-46.
16 彭瑞冰, 蒋霞敏, 乐可鑫, 等. 2014. 盐度对拟目乌贼生长及生化成分的影响[J]. 海洋环境科学, 33(5): 719-723.
17 强俊, 任洪涛, 徐跑, 等. 2012. 温度与盐度对吉富品系尼罗罗非鱼幼鱼生长和肝脏抗氧化酶活力的协同影响[J]. 应用生态学报, 23(1): 255-263.
18 施兆鸿, 张晨捷, 彭士明, 等. 2013. 盐度对银鲳血清渗透压、过氧化氢酶及鳃离子调节酶活力的影响[J]. 水产学报, 37(11): 1697-1705.
19 孙鹏, 尹飞, 彭士明, 等. 2010. 盐度对条石鲷幼鱼肝脏抗氧化酶活力的影响[J]. 海洋渔业, 32(2): 154-159.
20 谭永胜, 刘建勇, 徐彬晓. 2011. 高锰酸钾对虎斑乌贼胚胎和幼体的毒性研究[J]. 水产养殖, 32(1): 12-15.
21 汪开毓, 耿毅, 钟妮娜. 2000. 鱼类应激性出血症的病理学研[J]. 淡水渔业, 30(11): 28-31.
22 王妤, 庄平, 章龙珍, 等. 2011. 盐度对点篮子鱼的存活、生长及抗氧化防御系统的影响[J]. 水产学报, 35(1): 66-73.
23 文菁, 曹观蓉, 李施颖, 等. 2011. 环境因子对虎斑乌贼幼体存活率及行为的影响[J]. 水产科学, 30(6): 321-324.
24 徐华, 艾春香, 林琼武, 等. 2007. 盐度胁迫对锯缘青蟹体内腺苷三磷酸酶和磷酸酶活性的影响[J]. 农业环境科学学报, 26(3): 1173-1177.
25 徐永健, 刘彬. 2012. 盐度胁迫对大海马( Hippocampus kuda )幼体生长、组分及酶活力的影响[J]. 海洋与湖沼, 43(6): 1279-1285.
26 尹飞, 王春琳, 宋微微. 2005. 曼氏无针乌贼幼体生态因子耐受性的研究[J]. 湛江海洋大学学报, 25(4): 39-43.
27 张克烽. 2007. 动物抗氧化系统中主要抗氧化酶基因的研究进展[J]. 动物学杂志, 42(2): 153-160.
28 张玉玉, 王春琳, 李来国. 2010. 长蛸的盐度耐受性及盐度胁迫对其血细胞和体内酶活力的影响[J]. 台湾海峡, 29(4): 452-459.
29 赵峰, 庄平, 李大鹏, 等. 2008. 盐度对施氏鲟和西伯利亚鲟稚鱼的急性毒性[J]. 生态学杂志, 27(6): 929-932.
30 郑永华, 蒲富永. 1997. 汞对鲤鲫鱼组织转氨酶活性的影响[J]. 西南农业大学学报, 19(1): 41-45.
31 CHEN JIANCHU, NAN FANHUA. 1995. Oxygen consumption and ammonia-N excretion of Penaeus chinensis juvenile exposed to ambient ammonia at different salinity levels[J]. Journal of Crustacean Biology, 68(6): 712-719.
32 CHOI C Y, AN K W, AN M I. 2008. Molecular characterization and mRNA expression of glutathione peroxidase and glu-tathione S-transferase during osmotic stress in olive flounder ( Paralichthys olivaceus )[J]. Comparative Biochemistry and Physiology A, 149(3): 330-337.
33 EVANS D H, PIERMARINI P M, CHOE K. 2005. The Multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J]. Physiological Reviews, 85: 97-177.
34 HOQUE MD S, BENJAKUL S, PRODPRAN T. 2011. Properties of film from cuttlefish ( Sepia pharaonis ) skin gelatin incorporated with cinnamon, clove and star anise extracts[J]. Food Hydrocolloids, 25(5): 1085-1097.
35 HOWELL B R, DAY O J, ELLIS T, et al. 1998. Early life stages of farmed fish[M]//BLACK C M, PICKERING A D. Biology of farmed fish. Sheffield: Sheffield Academic Press: 27-66.
36 LIU YUAN, WANG WEINA, WANG ANLI. 2007. Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone, 1931) exposed to acute salinity changes[J]. Aquaculture, 265(1-4): 351-358.
37 NABHITABHATA J, ASAWANGKUNE P, AMORNJARUCHIT S, et al. 2001. Tolerance of eggs and hatchlings of neritic cephalopods to salinity changes[J]. Phuket Marine Biological Center Special Publication, 25(1): 91-99.
38 NARISAWA S, HOFMAN M C, ZIOMEK C A, et al. 1992. Embryonic alkaline phosphatase is expressed at M-phase in the spermatogenic lineage of the mouse[J]. Development, 116(1): 159-165.
39 POLSTRA K, BAKKER W W, KLOK P A, et al. 1997. Dephosphorylation of endotoxin by alkaline phosphatase in vivo [J]. American Journal Pathology, 151(4): 1163-1169.
40 RUDNEVA I I. 1997. Blood antioxidant system of Black Sea elasmobranch and teleost[J]. Comparative Biochemistry and Physiology, 118(2): 255-260.
41 SAMSONOVA M V, MINKOVA N O, LAPTEVA T I, et al. 2003. Aspartate-and alanine-aminotransferase in early development of keta[J]. Russian Journal of Developmental Biology, 34(1): 14-18.
42 SEN H. 2005. Incubation of European squid ( Loligo vulgaris Lamarck 1798) eggs at different salinities[J]. Aquaculture Research, 36(9): 876-881.
43 SHIN H S, YOO J H, MIN T S, et al. 2010. The effects of quercetin on physiological characteristics and oxidative stress resistance in olive flounder, Paralichthys olivaceus [J]. The Asian-Australasian Association of Animal Production Societies, 23(5): 588-597.