Marine Geology

Recent research progress on the rifting-breakup process in passive continental margins

  • SUN Zhen ,
  • LIU Siqing ,
  • PANG Xiong ,
  • JIANG Jianqun ,
  • MAO Shuang
Expand
  • 1. Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
    2. Department of Science and Technology, Shenzhen Branch of China National Offshore Oil Corporation, Guangzhou 510420, China;
    3. Hainan Oil and Gas Exploration Branch Company, Liaohe Oil field, PetroChina Company Limited, Panjin 124010, China

Received date: 2015-02-27

  Online published: 2016-02-02

Supported by

Major National Oil and Gas Projects (2011ZX05025-003-005); The Joint Program of NSFC and Guangdong Province(U1301233)

Abstract

With the comprehensive utilization of deep reflection and refraction seismic data, ocean drilling program and field outcrops, great progress was made in understanding continental margin. Especially on the structure, evolution and formation mechanisms of passive continental margins, which are undergoing a paradigm shift. Starting from basic concept and classification, this paper reviewed the deep crustal to lithospheric structure, the layer velocity, the subsidence feature, and the breakup pattern of several types of passive continental margins based on recent seismic explorations. Then, mechanisms of passive continental margin formation were discussed. Based on existing research progress, we found that magma-poor and magma-rich margins may have lots of similarities in pre-rift and syn-rift stages, either in lithological components or rifting structures. They just differentiated during breakup depending on whether there was the involvement of hot mantle. During rifting stage, passive continental margin may evolve into four or more types, such as the whole lithospheric breakup type, the upper crust remnant type, the lower crust exhumation type, the upper mantle exhumation type, among others. The different rheological structures, stretching rate and mantle temperature are among the most important factors affecting the marginal structure evolution. Mechanism for high velocity lower crust is summarized. Usually, serpentinization of exhumed mantle is responsible for magma-poor margin, whereas underplating caused by high temperature mantle is responsible for magma-rich margin. Inherited high-grade metamorphic rocks were suggested to be one of the other causes. The above research progresses on passive continental margins provide us references to the research of the South China Sea.

Cite this article

SUN Zhen , LIU Siqing , PANG Xiong , JIANG Jianqun , MAO Shuang . Recent research progress on the rifting-breakup process in passive continental margins[J]. Journal of Tropical Oceanography, 2016 , 35(1) : 1 -16 . DOI: 10.11978/2015030

References

1 郝天珧, 徐亚, 孙福利, 等, 2011. 南海共轭大陆边缘构造属性的综合地球物理研究[J].地球物理学报, 54(12): 3098-3116. doi:10.3969/j.issn.0015733.2011.12.011. HAO T Y"> doi:10.3969/j.issn.0015733.2011.12.011. HAO T Y, XU Y, SUN F L, et al, 2011. Integrated geophysical research on the tectonic attribute of conjugate continental margin of South China Sea[J]. Chinese J Geophy, 54(12): 3098-3116. doi:10.3969/j.issn.0015733.2011.12.011.
2 李家彪, 2011. 南海大陆边缘动力学: 科学实验与研究进展[J].地球物理学报, 54(12): 2993-3003. doi:10.3969/j.issn. 0015733.2011.12.002. LI J B, 2011. Dynamics of the continental margins of South China Sea: scientific experiments and research progress[J]. Chinese J Geophy, 54(12): 2993-3003. doi:10.3969/j.issn.0015733. 2011.12.002.
3 李家彪, 丁巍伟, 吴自银, 等, 2012. 南海西南海盆的渐进式扩张[J]. 科学通报, 57(20): 1896-1905. LI J B, DING W W, WU Z Y, et al, 2012. The propagation of seafloor spreading in the southwestern subbasin, South China Sea[J]. Chinese Sci Bull, 57(20): 1896-1905.
4 李三忠, 索艳慧, 刘鑫, 等, 2012. 南海的基本构造特征与成因模型: 问题与进展及论争[J].海洋地质与第四纪地质, 32(6): 35-53. LI S Z, SUO Y H, LIU X, et al. 2012. Basic structural pattern and tectonic models of the South China Sea: problems, advances and controversies[J]. Marine Geology and Quaternary Geology, 32(6): 35-53.
5 廖杰, 周蒂, 赵中贤, 等, 2011. 珠江口盆地白云凹陷裂后异常沉降的数值模拟[J]. 中国科学: 地球科学, 41(4): 504-517. LIAO J, ZHOU D, ZHAO Z X, et al. 2011. Numerical modeling of the anomalous post-rift subsidence in the Baiyun Sag, Pearl River Mouth Basin[J]. Sci China Earth Sci, 41(4): 504-517. doi:10.1007/ s11430-011-4184-3.
6 刘安, 武国忠, 吴世敏, 2008. 南海东北部下地壳高速层的成因探讨[J]. 地质论评, 54(5): 609-616. LIU A, WU G Z, WU S M, 2008. A discussion on the origin of high velocity layer in the lower crust of northeast South China Sea. Geological Review, 54(5): 609-616.
7 庞雄, 陈长民, 彭大钧, 等, 2007. 南海珠江深水扇系统及油气[M]. 北京: 科学出版社: 99-190. PANG X, CHEN C, PENG D, et al, 2007. The Pearl River deep-water fan system & petroleum in South China Sea[M]. Beijing: Science Press: 99-190.
8 丘学林, 赵明辉, 敖威, 等, 2011. 南海西南次海盆与南沙地块的OBS探测和地壳结构[J]. 地球物理学报, 54(12): 3117-3128. doi:10.3969/j.issn.0015733.2011.12.012. QIU X L"> doi:10.3969/j.issn.0015733.2011.12.012. QIU X L, ZHAO M H, AO W, et al, 2011. OBS survey and crustal structure of the southwest sub basin and Nansha block, South China Sea[J]. Chines J of Geophy, 54(12): 3117-3128. doi:10.3969/j.issn.0015733.2011.12.012.
9 丘学林, 赵明辉, 徐辉龙, 等, 2012. 南海深地震探测的重要科学进程: 回顾和展望[J]. 热带海洋学报, 31(3): 1-9. QIU X L, ZHAO M H, XU H L, et al, 2012. Important processes of deep seismic surveys in the South China Sea: retrospection and expectation[J]. J of Tropical Oceanography, 31(3): 1-9.
10 任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 22(1): 102-114. REN J Y, PANG X, LEI C, et al, 2015. Ocean and continent transition in passive continental margins and analysis of lithospheric extension and breakup process: implication for research of the deepwater basins in the continental margins of South China Sea[J]. Earth Science Frontiers, 2015, 22(1): 102-114.
11 宋海斌, 郝天珧, 江为为, 1998. 南海北部张裂边缘的类型及其形成机制探讨[C]//中国岩石力学与工程学会. 寸丹集——庆贺刘光鼎院士工作50周年学术论文集. 北京: 科学出版社: 74-81.
12 孙珍, 孙龙涛, 周蒂, 等, 2009. 南海岩石圈破裂方式与扩张过程的三维物理模拟研究[J]. 地球科学(中国地质大学学报), 34(3): 1-13. SUN Z, SUN L T, ZHOU D, et al, 2009. Discussion on the South China Sea evolution and lithospheric breakup through 3D analogue modeling[J]. Earth Science (J of China University of Geosciences), 34(3): 1-13.
13 孙珍, 赵中贤, 李家彪, 等, 2011. 南沙地块内破裂不整合与碰撞不整合的构造分析[J]. 地球物理学报, 54(12): 3196-3209. doi:10.3969/J.issn.0015733.2011.12.019. SUN Z"> doi:10.3969/J.issn.0015733.2011.12.019. SUN Z, ZHAO Z X, LI J B, et al, 2011. Tectonic analysis of the breakup and collision unconformities in the Nansha[J]. Chinese J Geophy, 54(12): 3196-3209. doi:10.3969/J.issn.0015733. 2011.12.019.
14 卫小冬, 阮爱国, 赵明辉, 等, 2011. 穿越东沙隆起和潮汕坳陷的OBS广角地震剖面[J].地球物理学报, 54(12): 3324-3335.WEI X D, RUAN A G, ZHAO M H, et al, 2011. A wide angle OBS profile across Dongsha Uplift and Chaoshan Depression in the mid northern South China Sea a[J]. Chinese J Geophy, 54(12): 3325-3335. doi:10.3969/ j.issn.0015733.2011.12.030.
15 吴世敏, 周蒂, 丘学林, 2001. 南海北部陆缘的构造属性问题[J]. 高校地质学报, 7(4): 419-426. WU S M, ZHOU D, QIU X L, 2001. Tectonic Setting of the Northern Margin of South China Sea[J]. Geological J of China Universities, 7(4): 419-426.
16 解习农, 张成, 任建业, 等, 2011. 南海南北大陆边缘盆地构造演化差异性对油气成藏条件控制[J]. 地球物理学报, 54(12): 3280-3291. doi:10.3969/j.issn.0015733.2011.12.026. XIE X N"> doi:10.3969/j.issn.0015733.2011.12.026. XIE X N, ZHANG C, REN J Y, et al, 2011. Effects of distinct tectonic evolutions on hydrocarbon accumulation in northern and southern continental marginal basins of South China Sea[J]. Chinese J Geophy, 54(12): 3280-3291. doi:10.3969/ j.issn.0015733.2011.12.026.
17 阎贫, 刘海龄, 2002. 南海北部陆缘地壳结构探测结果分析[J]. 热带海洋学报, 21(2): 1-12. YAN P, LIU H L, 2002. Analysis on deep crust sounding results in northern margin of South China Sea[J]. J of Tropical Oceanography, 21(2): 1-12.
18 赵中贤, 周蒂, 廖杰, 等, 2010. 珠江口盆地陆架区岩石圈伸展模拟及裂后沉降分析[J]. 地质学报, 84(8): 1135-1145. ZHAO Z X, ZHOU D, LIAO J, et al, 2000. Lithospheric stretching modeling of the continental shelf in the Pearl River Mouth Basin and analysis of post-breakup subsidence[J]. Acta Geologica Sinica, 84(8): 1135-1145.
19 周蒂, 廖杰, 赵中贤, 2011. 张性盆地裂后异常沉降的正反演数值模拟方法[J]. 地球科学(中国地质大学学报), 36(2): 227-235. ZHOU D, LIAO J, ZHAO Z X, 2011. Forward and inverse modeling of anomalous post-rifting subsidence in extensional sedimentary basins[J]. Earth Science (J of China University of Geosciences), 36(2): 227-235.
20 ASLANIAN D, MOULIN M, OLIVET J L, et al, 2009. Brazilian and African passive margins of the Central Segment of the South Atlantic Ocean: kinematic constraints[J]. Tectonophysics, 468: 98-112.
21 BAUER K, NEBEN S, SCHRECKENBERGER B, et al, 2000. Deep structure of the Namibia continental margin as derived from integrated geophysical studies[J]. J of Geophy Research, 105, 25829-25853.
22 BERNDT C, SKOGLY O P, PLANKE S, et al, 2000. High velocity break-up related sills in the Vøring Basin off Norway[J]. Journal of Geophysical Research, 105(B1): 28443-28455.
23 BLAICH O A, FALEIDE J I, TSIKALAS F, 2011. Crustal breakup and continent-ocean transition at South Atlantic conjugate margins[J]. Journal of Geophysical Research, 116, B01402.
24 BOILLOT G, GRIMAUD S, MAUFFRET A, et al, 1980. Ocean- Continent boundary off the Iberian margin: a serpentinite diapir west of the Galicia Bank[J]. Earth and Planetary Science Letters, 48: 23-34.
25 BOILLOT G M, RECQ M, WINTERER E L, et al, 1987. Tectonic denudation of the upper mantle along passive margins: a model based on drilling results (ODP Leg 103, western Galicia, Spain) [J]. Tectonophysics: 132, 335-342.
26 BOILLOT G, BESLIER M O, GIRARDEAU J, 1995. Nature, structure and evolution of the ocean continent boundary: the lesson of the West Galicia Margin (Spain)[M] // BANDA E, TORNE M, TALWANI M. Rifted Ocean-Continent Boundaries. Springer Netherlands: 219-229.
27 BREIVIK A J, MJELDE R, FALEIDE J I, et al, 2006. Rates of continental breakup magmatism and seafloor spreading in the Norway Basin-Iceland plume interaction[J]. J Geophys Res, 111: B07102. doi:10.1029/2005JB004004.
28 COFFIN M F, ELDHOLM O, 1994. Large igneous provinces: crustal structure, dimensions, and external consequences[J]. Reviews of Geophysics, 32: 1-36.
29 CONTRERAS J, ZÜHLKE R, BOWMAN S, et al, 2010. Seismic stratigraphy and subsidence analysis of the southern Brazilian margin (Campos, Santos and Pelotas basins)[J]. Marine and Petroleum Geology, 27: 1952-1980.
30 CONTRUCCI I, MATIAS L, MOULIN M, et al, 2004. Deep structure of the West African continental margin (Congo, Zaïre, Angola), between 5_S and 8_S, from reflection/ refraction seismics and gravity data[J]. Geophysical Journal International, 158: 529-553.
31 DING W W, FRANKE D, LI J B, et al, 2013. Seismic stratigraphy and tectonic structure from a composite multi-channel seismic profile across the entire Dangerous Grounds, South China Sea[J]. Tectonophsics, 582: 162-176.
32 DORSEY R J, UMHOEFER P J, OSKIN M E, et al, 2013. Rupturing continental lithosphere in the Gulf of California & Salton Trough[J]. GeoPRISMS Newsletter: 1-6.
33 DUNCAN R A, LARSEN H C, ALLAN J F, et al, 1996. Proc. ODP, Initial Reports[R]. 163. Ocean Drilling Program, College Station, TX: 279.
34 EBBING J, LUNDIN E, OLESEN O, et al, 2006. The mid- Norwegian margin: a discussion of crustal lineaments, mafic intrusions, and remnants of the Caledonian root by 3D density modelling and structural interpretation[J]. J Geol Soc, 163: 47-59.
35 ECCLES J D, WHITE R S, CHRISTIE A F, 2011. The composition and structure of volcanic rifted continental margins in the North Atlantic: Further insight from shear waves[J]. Tectonophysics, 508(2011): 22-33.
36 ELDHOLM O, THIEDE J, TAYLOR B, 1987. Proc. ODP, Sci. Results. Ocean Drilling Program[R]. College Station, TX, United States. 104: 783.
37 ELDHOLM O, THIEDE J, TAYLOR B, 1989. Evolution of the Vøring volcanic margin[C]. Proceedings of the Ocean Drilling Program, Scientific Results, 104: 1033-1065.
38 ELDHOLM O, GRUE K, 1994. North-Atlantic volcanic margins - dimensions and production-rates[J]. J Geophys Res. Solid Earth, 99: 2955-2968.
39 ELDHOLM O, GLADCZENKO T P, SKOGSEID J, et al, 2000. Atlantic volcanic margins: a comparative study[M]// NØTTVEDT A, LARSEN B T, OLAUSSEN S, et al. Dynamics of the Norwegian margin. Geological Society of London Special Publication. London: The Geological Society, 167: 411-428.
40 ELDHOLM O, TSIKALAS F, FALEIDE J I, 2002. The continental margin off Norway 62-75°N: Paleogene tectono-magmatic segmentation and sedimentation[M]// JOLLEY D, BELL B. The North Atlantic Igneous Province: Stratigraphy, Tectonics, Volcanic and Magmatic Processes. London: Geological Society of London, Special Publication, 197: 39-68.
41 FERNÀNDEZ M, AFONSO J C, RANALLI G, 2010. The deep lithospheric structure of the Namibian volcanic margin[J]. Tectonophysics, 481: 68-81.
42 FRANKE D, NEBEN S, LADAGE S, et al, 2007. Margin segmentation and volcano-tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic[J]. Marine Geology, 244: 46-67.
43 FRANKE D, LADAGE S, SCHNABEL M, et al, 2010. Birth of a volcanic margin off Argentina, South Atlantic[J]. Geochemistry, Geophysics, Geosystems, 11: Q0AB04.
44 FRANKE D, 2013. Rifting, lithosphere breakup and volcanism: comparison of magma-poor and volcanic rifted margins[J]. Mar Pet Geol, 43: 63-87.
45 GABRIELSEN R H, ODINSEN T, GRUNNALEITE I, 1999. Structuring of the Northern Viking Graben and the Møre Basin; the influence of basement structural grain, and the particular role of the Møre-Trøndelag Fault Complex[J]. Mar Pet Geol, 16: 443-465.
46 GEOFFROY L, 2005. Volcanic passive margins[J]. C R Geosci, 337: 1395-1408.
47 GERNIGON L, RINGENBACH J C, PLANKE S, et al, 2003. Extension, crustal structure and magmatism at the outer Voring Basin, Norwegian margin[J]. J Geol Soc, 160: 197-208.
48 GERNIGON L, RINGENBACH J C, PLANKE S, et al, 2004. Deep structures and breakup along volcanic rifted margins: insights from integrated studies along the outer Vøring Basin (Norway) [J]. Mar Pet Geol, 21: 363-372.
49 GLADCZENKO T P, HINZ K, ELDHOLM O, et al, 1997. South Atlantic volcanic margins[J]. Journal of the Geological Society, 154: 465-470.
50 GLADCZENKO T P, SKOGSEID J, ELDHOLM O, 1998. Namibia volcanic margin[J]. Marine Geophysical Researches, 20: 313-341.
51 GROUPE G, 1979. The continental margin off Galicia and Portugal: acoustical stratigraphy, dredge stratigraphy and structural evolution[R] // SIBUET J C, RYAN W B F. Initial Reports of the Deep Sea Drilling Project, 47 (Part 2). Washington, DC: US Government Printing Office: 633-662.
52 HARRIS R, 2003. Geodynamic patterns of ophiolites and marginal basins in the Indonesian and New Guinea regions[M]// DILEK Y and ROBINSON P T. Ophiolites in earth history . London: Geological Society of London, Special Publications, 218: 481-505.0305-8719.
53 HAYES D E, NISSEN S S, 2005. The South China Sea margins: implications for rifting contrasts[J]. Earth and Planetary Science Letters, 237: 601-616.
54 HINZ K, NEBEN S, SCHRECKENBERGER B, et al, 1999. The Argentine continental margin north of 48_S: Sedimentary successions, volcanic activity during breakup[J]. Marine and Petroleum Geology, 16: 1-25.
55 HOPPER J R, FUNCK T, TUCHOLKE B E, 2007. Structure of the Flemish Cap margin, Newfoundland: insights into mantle and crustal processes during continental breakup [M]. London: Geological Society of London, Special Publications, 282: 47-61.
56 HUISMANS R, BEAUMONT C, 2011. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins [J]. Nature, 473: 74-78.
57 HUISMANS R, BEAUMONT C, 2014. Rifted continental margins: The case for depth-dependent extension[J]. Earth and Planetary Science Letters, 407: 148-162.
58 JACKSON M P A, CRAMEZ C, FONCK J M, 2000. Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic margins: implications for salt tectonics and source rocks[J]. Marine and Petroleum Geology, 17: 477-498.
59 KARNER G D, DRISCOLL N W, 2000. Timing and distribution of tectonic deformation across the Exmouth Plateau, northwest Australia, determined from Stratal architecture and quantitative basin modelling[J]. Geol Soc. Spec Publ, 164: 271-311.
60 KARNER G D, GAMBÔA L A P, 2007. Timing and origin of the South Atlantic pre-salt sag basins and their capping evaporates[M] // SCHREIBER B C, LUGLI S , BABEL M. Evaporites through space and time. London: Geological Society, London, Special Publications, 285: 15-35. doi:10.1144/SP285.2.
61 LARSEN H C, SAUNDERS A D, CLIFT P D, 1994. Proc. ODP, Initial Reports[R]. 152. Ocean Drilling Program, College Station, TX: 977.
62 LARSEN H C, SAUNDERS A D, 1998. Tectonism and volcanism at the Southeast Greenland rifted margin: A record of plume impact and later continental rupture[R]. Proc Ocean Drill. Program Sci Results. ODP: 503-534.
63 LI C F, LIN J, KULHANEK D K, et al, 2014. South China Sea tectonics: Opening of the South China Sea and its implications for southeast Asian tectonics, climates, and deep mantle processes since the late Mesozoic[R]. IODP Sci Prosp, 349. doi:10.2204/iodp.sp.349.2013: 1-53.
64 LIZARRALDE D, AXEN G J, BROWN H E, et al, 2007. Variation in styles of rifting in the Gulf of California[J]. Nature, 448: 466-469. doi:10.1038/nature06035.
65 LUNDIN E R, DORÉ A G, 1997. A tectonic model for the Norwegian passive margin with implications for the NE Atlantic: early Cretaceous to break-up[J]. Geological Society London Journal, 154: 545-550.
66 MAKRIS J, PAPOULIA J, MCPHERSON S, et al, 2012. Mapping of Sediments and Crust Offshore Kenya, East Africa: A Wide Aperture Refraction / Reflection Survey[C]. Las Vegas, Nevada: SEG Annual Meeting abstract.
67 MANATSCHAL G, BERNOULLI D, 1999. Architecture and tectonic evolution of nonvolcanic margins: present day Galicia and ancient Adria[J]. Tectonics, 18: 1099-1119.
68 MARTINEZ F, FRYER P, BAKER N A, et al, 1995. Evolution of backarc rifting: Mariana Trough, 20°-24°N[J]. J Geophys Res, 100(B3): 3807-3828.
69 MASINI E, MANATSCHAL G, MOHN G, et al, 2011. The tectono-sedimentary evolution of a supradetachment rift basin at a deep-water magma-poor rifted margin: the example of the Samedan Basin preserved in the Err nappe in SE Switzerland[J]. Basin Res, 23: 652-677.
70 MENZIES M A, CLEMPERER S L, EINGER C Z, et al, 2001. Volcanic rifted margins[M]. The Geological Society of America, Special paper 362.
71 MENZIES M A, KLEMPERER S, EBINGER C, et al, 2002. Characteristics of volcanic rifted margins[M] // MENZIES M A, KLEMPERER S, EBINGER C, et al. Volcanic Rifted Margins. Boulder, Colorado: Geological Society of America Special Paper, 362: 1-14.
72 MEYER R, VAN WIJK J, GERNIGON L, 2007. The North Atlantic Igneous Province: A review of models for its formation[M/OL] //FOULGER G R, JURDY D M. Plates, Plumes, and Planetary Processes. Geological Society of America Special Paper, 430: 525-552. [2015-02-27]. http:// www.researchgate.net/publication/228712862.
73 MJELDE R, KASAHARA J, SHIMAMURA H, et al, 2002. Lower crustal seismic velocity-anomalies; magmatic underplating or serpentinised peridotite? Evidence from the Vøring Margin, NE Atlantic[J]. Marine Geophysical Researches, 23: 169-183.
74 MJELDE R, RAUM T, KANDILAROV A, et al. 2009. Crustal structure and evolution of the outer Møre margin, NE Atlantic[J]. Tectonophysics, 468: 224-243.
75 MOHN G, MANATSCHAL G, BELTRANDO M, et al, 2012. Necking of continental crust in magma-poor rifted margins: evidence from the fossil Alpine Tethys margins[J]. Tectonics, 31: TC1012.
76 MOHRIAK W, HOBBS R, DEWEY J F, 1990. Basin-forming processes and the deep structure of the Campos Basin, offshore Brazil[J]. Marine and Petroleum Geology, 7: 94-100.
77 MOHRIAK W, NEM_COK M, ENCISO G, 2008. South Atlantic Divergent Margin Evolution: Rift-border Uplift and Salt Tectonics in the Basins of SE Brazil[J]. Geological Society, London, (Special Publications), 294: 365-398.
78 MORGAN W J, 1971. Convection plumes in the lower mantle[J]. Nature, 230: 42-43.
79 MUTTER J C, 1993. Margins declassified[J]. Nature, News and Views, 364: 393-394.
80 NIRRENGARTEN M, GERNIGON L, MANATSCHAL G, 2014. Lower crustal bodies in the Møre volcanic rifted margin: Geophysical determination and geological implications[J]. Tectonophysics, 636: 143-157.
81 NISSEN S S, HAYES D E, BUHL P, et al, 1995. Deep penetration seismic soundings across the northern margin of the South China Sea[J]. J Geophys Res, 100: 22407-22433.
82 OLAFSSON I, SUNDVOR E, ELDHOLM O, et al, 1992. Møre margin: crustal structure and analysis of expanded spread profiles[J]. Mar Geophys Res, 14: 137-163.
83 OSMUNDSEN P T, EBBING J, 2008. Styles of extension offshore mid-Norway and implications for mechanisms of crustal thinning at passive margins[J]. Tectonics, 27: TC6016. doi:10.1029/2007tc002242.
84 PÉREZ-GUSSINYÉ M, MORGAN J P, RESTON T J, et al, 2006. The rift to drift transition at non-volcanic margins: Insights from numerical modelling[J]. Earth and Planetary Science Letters, 244 (2006) 458-473.
85 PÉRON -PINVIDIC G, MANATSCHAL G, 2009. The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view[J]. International Journal of Earth Sciences, 98: 1581-1597. doi:10.1007/ s00531-008-0337-9
86 PERON-PINVIDIC G, MANATSCHAL G, OSMUNDSEN P T, 2013. Structural comparison of archetypal Atlantic rifted margins: a review of observations and concepts[J]. Mar Pet Geol, 43: 21-47.
87 PLANKE S, SYMONDS PA, ALVESTAD E, et al, 2000. Seismic volcanostratigraphy of large-volume basaltic extrusive complexes on rifted margins[J]. J Geophys Res Solid Earth, 105: 19335-19351.
88 QIU X L, YE S Y, WU S M, et al, 2001. Crustal structure across the Xisha Trough, northwestern South China Sea[J]. Tectonophysics, 341(1-4): 179-193.
89 REN S, SKOGSEID J, ELDHOLM O, 1998. Late Cretaceous- Paleocene extension on the Vøring volcanic margin[J]. Marine Geophysical Research, 20: 343-369.
90 RESTON T J, 2007. The formation of non-volcanic rifted margins by the progressive extension of the lithosphere: the example of the West Iberia margin[M]//KARNER G, MANATSCHAL G, PINHEIRO L D. Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup. London: Geological Society of London, Special Publication: 77-110.
91 RESTON T J, 2009. The structure, evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: a synthesis[J]. Tectonophys, 468: 6-27.
92 REYNISSON R F, 2010. Deep structure and sub-basalt exploration of the mid-Norwegian margin with emphasis on the Møre margin[D]. Trondheim: Norwegian University of Science and Technology: 1-142.
93 RICHARDS M A, DUNCAN R A, COURTILLOT V E, 1989. Flood basalts and hot-spot tracks: Plume heads and tails[J]. Science, 246: 103-107.
94 ROBERTS D G, BACKMAN J, MORTON A C, et al, 1984. Evolution of volcanic rifted margins: synthesis of Leg 81 results on the west margin of Rockall Plateau, Initial Reports of the deep sea drilling project 81[R]. Ocean Drilling Program. College Station, TX, United States: Texas A & M University: 883-911.
95 ROBERTS D G, BALLY A W, 2012. From rifts to passive margins: a continuum of extension (Chapter 2)[M] // ROBERTS D G, BALLY A W. Regional Geology and Tectonics: Phanerozoic Rift Systems and Sedimentary Basins. Amsterdam: Elsevier: 19-31.
96 RÜPKE L H, SCHMID D W, PÉREZ-GUSSINYÉ M, et al, 2013. Interrelation between rifting, faulting, sedimentation, and mantle serpentinization during continental margin formation— including examples from the Norwegian[J]. Geochem Geophys Geosyst, 14: 4351-4369.
97 SAUNDERS A D, FITTON J G, KERR A C, et al, 1997. The North Atlantic Igneous Province[M]// MAHONEY J.J, COFFIN M F. Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Washington DC: American Geophysical Union, Geophysical Monograph 100: 45-93.
98 SAWYER D S, WHITMARSH R B, KLAUS A, 1994. Proceedings of the Ocean Drilling Program, Initial Reports, 149[R]. Ocean Drilling Program. College Station, TX: 1-25.
99 SCHLINDWEIN V, JOKAT W, 1999. Structure and evolution of the continental crust of northern east Greenland from integrated geophysical studies[J]. Journal of Geophysical Research, 104(b7): 15227-15245.
100 SIBUET J C, TUCHOLKE B E, 2012. The geodynamic province of transitional lithosphere adjacent to magma-poor continental margins[M]. London: Geological Society, Special Publications, 429-452. doi:10.1144/SP369.15.
101 SKOGSEID J, PLANKE S, FALEIDE J I, et al, 2000. NE Atlantic continental rifting and volcanic margin formation[M] // NØTTVEDT A. Dynamics of the Norwegian margin. London: Geological Society of London, Special Publications, 167: 295-326.
102 SUN Z, LARSEN H, Li C, et al, 2013. Testing hypotheses for lithosphere thinning during continental breakup: drilling at the South China Sea rifted margin[R]. IODP Proposal 838CPP: 1-30.
103 SUN Z, ZHONG Z H, KEEP M, et al, 2009. 3D analogue modeling of the South China Sea: A discussion on breakup pattern[J]. Journal of Asian Earth Sciences, 34 (4): 544-556. doi:10.1016/j.jseaes.2008.09.002.
104 SVENSEN H, PLANKE S, MALTHE-SØRENSSEN A, et al, 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming[J]. Nature, 429: 542-545.
105 TALWANI M, ABREU V, 2000. Inferences regarding initiation of oceanic crust formation from the U.S. east coast margin and conjugate South Atlantic margins[M]// MOHRIAK W, TALWANI M. Atlantic Rifts and Continental Margins. Washington, DC: American Geophysical Union: 211-234.
106 TAYLOR B, HAYES D E, 1980. The tectonic evolution of the South China Basin[M] // HAYES D E. The tectonic and geologic evolution of Southeast Asian Seas and Islands. American Geophysical Union. Geophysical Monograph, 23: 89-104.
107 TUCHOLKE B E, SIBUET J C, KLAUS A, 2004. Proceedings of the Ocean Drilling Program, Initial Reports, 210[R]. Ocean Drilling Program. College Station, TX: 1-30.
108 TUCHOLKE B E, SIBUET J C, 2007. Leg 210 synthesis: tectonic, magmatic, and sedimentary evolution of the Newfoundland- Iberia rift[R] // TUCHOLKE B E, SIBUET J C, KLAUS A. Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program. College Station, TX: 1-56.
109 WANG P, PRELL W L, BLUM P, et al, 2000. Proc. of the Ocean Drilling Progr, Initial Reports 184[R]. Ocean Drilling Program. College Station, TX: 1-20.
110 WANGEN M, MJELDE R, FALEIDE J I, 2011. The extension of the Vøring margin (NE Atlantic) in case of different degrees of magmatic underplating[J]. Basin Res, 23: 83-100.
111 WHITE R, MCKENZIE D, 1989. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts[J]. Journal of Geophysical Research, 94: 7685-7729.
112 WHITE R S, 1992. Magmatism during and after continental breakup[M] // STOREY B C, ALABASTER T, PANKHURST R J. Magmatism and the Causes of Continental Break-up. London: Geological Society Special Publication, 68: 1-38.
113 WHITE R S, SMITH L K, Roberts A W, et al, 2008. Lower crustal intrusion on the North Atlantic continental margin[J]. Nature, 452: 460-464.
114 WHITMARSH R B, MILES P R, 1995. Models of the development of the West Iberia rifted continental-margin at 40-Degrees-300N deduced from surface and deeptow magnetic-anomalies[J]. Journal of Geophysical Research- Solid Earth, 100: 3789-3806.
115 WHITMARSH R B, BESLIER M O, WALLACE P J, 1998. Proceedings of the Ocean Drilling Program, Initial Reports, 173[C]. Ocean Drilling Program. College Station, TX: 1-30.
116 WHITMARSH R B, MANATSCHAL G, MINSHULL T A, 2001. Evolution of magma-poor continental margins from rifting to seafloor spreading[J]. Nature, 413: 150-154.
117 XIE X, MÜLLER R D, LI S, et al, 2006. Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography[J]. Marine and Petroleum Geology, 23: 745-765.
118 YAN P, DENG H, LIU H, et al, 2006. The temporal and spatial distribution of volcanism in the South China Sea region[J]. Journal of Asian Earth Sciences, 27: 647-659.
119 ZHAO M, QIU X, XIA S, et al, 2010. Seismic structure in the northeastern South China Sea: S-wave velocity and V p / V s ratios derived from three-component OBS data[J]. Tectonophysics, 480(1-4): 183-197. doi:10.1016/j.tecto.2009. 10.004.
120 ZHOU D, RU K, CHEN H Z, 1995. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 251: 161-177.
121 ZHOU D, YAO B, 2009. Tectonics and sedimentary basins of the South China Sea: challenges and progresses[J]. Journal of Earth Science
Outlines

/