Marine Hydrography

Numerical experiments on wavenumber directional discretization in the MASNUM Wave Model

  • TENG Yong ,
  • HAN Lei ,
  • YANG Yongzeng ,
  • QIAO Fangli ,
  • SUN Baonan ,
  • LU Jing
Expand
  • 1. First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China;
    2. Key Lab of Marine Science and Numerical Modeling, State Oceanic Administration, Qingdao 266061, China;

Received date: 2014-03-06

  Online published: 2016-02-02

Supported by

The National Natural Science Foundation of China (40906017)

Abstract

This study shows some numerical experiments based on the 3rd generation wave model of MASNUM, in four cases of different wavenumber directional discretization numbers: 12, 24, 36, and 48, respectively in the Pacific Ocean in 2005, and compares the model results with 17 buoy observations. These results indicate that the discretization number of 36 is the best choice for the model setting in the mid-latitude area and the eastern Pacific, while the discretization number of 24 is the best choice in the low latitude region. Comparison shows that the best discretization number is 24 in winter while 36 in summer. We also find that when significant wave height is between 2.0 and 4.0 m, the best discretization number is 24. When significant wave height is lower than 2.0 m, 24 and 36 are both proper choices. We recommend choosing 36 when under poor ocean conditions. All above results show obvious improvements comparing with the case of discretization number 12. Therefore, we believe that the discretization number of the MASNUM wave model should be greater than 12, and that the number of 24 or 36 is a better choice.

Cite this article

TENG Yong , HAN Lei , YANG Yongzeng , QIAO Fangli , SUN Baonan , LU Jing . Numerical experiments on wavenumber directional discretization in the MASNUM Wave Model[J]. Journal of Tropical Oceanography, 2016 , 35(1) : 82 -95 . DOI: 10.11978/2014019

References

1 黄卓, 徐海明, 杜岩, 等, 2009. 厄尔尼诺期间和后期南海海面温度的两次显著增暖过程[J]. 热带海洋学报, 28(5): 49-55. HUANG ZHUO, XU HAIMING, DU YAN, et al, 2009. Two sea-surface warming events in the South China Sea during and after El Niño[J]. Journal of Tropical Oceanography, 28(5): 49-55.
2 ALORY G, WIJFFELS S, MEYERS G, 2007. Observed temperature trends in the Indian Ocean over 1960-1999 and associated mechanisms[J]. Geophys Res Lett, 34(2): L02606. doi:10.1029/2006GL028044.
3 CHOWDARY J S, XIE S P, TOKINAGA H, et al., 2012. Interdecadal variations in ENSO teleconnection to the Indo-Western Pacific for 1870-2007[J]. J Climate, 25: 1722-1744.
4 COMPO G P, WHITAKER J S, SARDESHMUKH P D, et al, 2011. The Twentieth Century Reanalysis project[J]. Quart J Roy Meteor Soc, 137: 1-28.
5 DU Y, XIE S P, 2008. Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models[J]. Geophys Res Lett, 35: L08712. doi:10.1029/2008GL033631.
6 DU Y, XIE S P, HUANG G, et al, 2009. Role of air-sea interaction in the long persistence of El Niño-induced north Indian Ocean warming[J]. J Climate, 22: 2023-2038.
7 DU Y, XIE S P, YANG Y L, et al, 2013. Indian Ocean variability in the CMIP5 multimodel ensemble: The Basin Mode[J]. J Climate, 26: 7240-7266.
8 GIESE B S, RAY S, 2011. El Niño variability in simple ocean data assimilation (SODA), 1871-2008[J]. J Geophys Res, 116: C02024. doi:10.1029/2010JC006695.
9 HUANG R, WU Y, 1989. The influence of ENSO on the summer climate change in China and its mechanism[J]. Advances in Atmospheric Science, 6(1): 21-32.
10 HUANG G, HU K, XIE S P, 2010. Strengthening of tropical Indian Ocean teleconnection to the northwest Pacific since the mid-1970s: An atmospheric GCM study[J]. J Climate, 23: 5294-5304.
11 ISHII M, SHOUJI A, SUGIMOTO S, et al, 2005. Objective analyses of sea surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection[J]. Int J Climatol, 25: 865-879.
12 KAPLAN A, CANE M A, KUSHNIR Y, et al, 1998. Analyses of global sea surface temperature 1856-1991[J]. J GeophysRes, 103: 18567-18589.
13 KARA A B, ROCHFORD P A, HURLBURT H E, 2000. Mixed layer depth variability and barrier layer formation over the north pacific ocean[J]. Journal of Geophysical Research Atmospheres, 105(C7): 16783-16801.
14 KLEIN S A, SODEN B J, LAU N C, 1999. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge[J]. J Climate, 12: 917-932.
15 LAU N C, NATH M J, 2000. Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments[J]. J Climate, 13: 4287-4309.
16 LIU Q, JIANG X, XIE S P, LIU W T, 2004. A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability[J]. J Geophys Res, 109: C07012. doi:10.1029/2003JC002179.
17 RAYNER N A, PARKERD E, HORTON E B, et al, 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. J Geophys Res, 108: 4407. doi:10.1029/2002jd002670.
18 REYNOLDS R W, RAYNER N A, SMITH T M, et al, 2002. An improved in situ and satellite SST analysis for climate[J]. J Climate, 15: 1609-1625.
19 SCHOTT F A, XIE S P, MCCREARY J P, 2009. Indian Ocean circulation and climate variability[J]. Rev. Geophys., 47, RG1002. doi:10.1029/2007RG000245.
20 SMITH T M, REYNOLDS R W, PETERSON T C, et al, 2008. Improvements NOAAs Historical Merged Land-Ocean Temp Analysis (1880-2006)[J]. Journal of Climate, 21: 2283-2296.
21 TRENBERTH K E, CARON J M, STEPANIAK D P, et al, 2002. Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures[J]. Journal of Geophysical Research Atmospheres, 107(D8): AAC 5-1-AAC 5-17.
22 WANG B, WU R and FU X, 2000. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate[J]. J Climate, 13: 1517-1536.
23 WANG C, WEISBERG R H, VIRMANI J I, 1999. Western Pacific interannual variability associated with the El Niño Southern Oscillation[J]. J Geophys. Res.: Oceans, 104(C3): 5131-5149.
24 WANG C, WANG W, WANG D, et al, 2006. Interannual variability of the South China Sea associated with El Niño[J]. J Geophys Res, 111: C03023. doi:10.1029/2005JC003333.
25 WOODRUFF S D, WORLEY S J, LUBKER S J, et al, 2011. ICOADS release 2.5: Extensions and enhancements to the surface marine meteorological archive[J]. Int J Climatol, 31: 951-967.
26 WORLEY S J, WOODRUFF S D, REYNOLDS R W, et al, 2005. ICOADS release 2.1 data and products[J]. Int J Climatol, 25: 823-842. doi:10.1002/joc.1166.
27 WU R, KIRTMAN B P, KRISHNAMURTHY V, 2008. An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring[J]. J Geophys Res, 113: D05104. doi:10.1029/2007JD009316.
28 XIE S P, XIE Q, WANG D X, et al, 2003. Summer upwelling in the South China Sea and its role in regional climate variations[J]. J Geophys Res, 108: 3261. doi:10.1029/2003JC001867.
29 XIE S P, HU K, HAFNER J, et al, 2009. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño[J]. J Climate, 22: 730-747.
30 XIE S P, DU Y, HUANG G, et al, 2010. Decadal shift in El Niño influences on Indo-western Pacific and East Asian climate in the 1970s[J]. J Climate, 23: 3352-3368.
31 YANG J, LIU Q, XIE S P, et al, 2007. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon[J]. Geophys Res Lett, 34: L02708. doi:10.1029/2006GL028571.
32 YANG Y L, XIE S P, DU Y, et al, 2015. Interdecadal difference of interannual variability characteristics of SCS SST associated with ENSO[J]. J Climate, 28: 7145-7160.
Outlines

/