Marine Meteorology

The vertical characteristics of atmospheric electric field in the surface layer of Xiamen coastal areas

  • YANG Chao ,
  • ZENG Jinquan ,
  • HONG Zhimin ,
  • WANG Yingbo
Expand
  • 1. Xiamen Lightning Protection Center, Xiamen 361012, China;
    2. Fujian Lightning Protection Center, Fuzhou 350001, China

Received date: 2014-11-17

  Online published: 2016-02-02

Supported by

Fujian province meteorological bureau grassroots special project (2015J11); Xiamen city meteorological scientific research fund project (2013XMKY05); Fujian province meteorological bureau youth science and technology special project (2013Q13)

Abstract

Using the synchronous observations of two atmospheric electric field mills on different planes at the straits atmospheric observation center of Xiamen, the vertical distribution of atmospheric electric field was investigated, and the results were tested using other independent observations. The results showed that the intensity of atmospheric electric field increased exponentially with increasing height in the lowest 30 m of the surface layer in the coastal areas of Xiamen. In the same environment, the variation trends of atmospheric electric field at different heights were similar. The results provide a reference for calibrating atmospheric electric field observations at different heights. The change of atmospheric electric field is a good indicator for different weathers.

Cite this article

YANG Chao , ZENG Jinquan , HONG Zhimin , WANG Yingbo . The vertical characteristics of atmospheric electric field in the surface layer of Xiamen coastal areas[J]. Journal of Tropical Oceanography, 2016 , 35(1) : 96 -101 . DOI: 10.11978/2014131

References

1 杜建亭, 华锋, 王道龙, 等, 2013. MASNUM-WAM中谱增长限制的改进与实验[J]. 海洋科学进展, 31(1): 31-37. DU JIANTING, HUA FENG, WANG DAOLONG, et al, 2013. Improvement and examination for the growth spectrum limit in the MASNUM-WAM model[J]. Advances in Marine Science, 31(1): 31-37.
2 华锋, 王道龙, 袁业立, 等, 2005. 复杂地形下海浪数值模式的特征线计算格式[J]. 海洋科学进展, 23(3): 272-280. HUA FENG, WANG DAOLONG, YUAN YELI, et al, 2005. The characteristic inlaid computational scheme in the MASNUM- WAM model in complex terrain[J]. Advances in Marine Science, 23(3): 272-280.
3 江兴杰, 华锋, 袁业立, 2010. 波—波间非线性能量传输的一种新计算方法[J]. 海洋学报, 32(6): 1-6. JIANG XINGJIE, HUA FENG, YUAN YELI, 2010. A new method for exact computation of the wave-wave non-linear energy transfer[J]. Acta Oceanologica Sinica, 32(6): 1-6.
4 王关锁, 乔方利, 杨永增, 2007. 基于MPI的LAGFD—WAM海浪数值模式并行算法研究[J]. 海洋科学进展, 25(4): 401-407. WANG GUANSUO, QIAO FANGLI, YANG YONGZENG, 2007. Study on parallel algorithm for MPI-based LAGFD-WAM numerical wave model[J]. Advances in Marine Science, 25(4): 401-407.
5 杨永增, 乔方利, 赵伟, 等, 2005. 球坐标系下MASNUM海浪数值模式的建立及其应用[J]. 海洋学报, 27(2): 1-7. YANG YONGZENG, QIAO FANGLI, ZHAO WEI, et al, 2005. MASNUM ocean wave numerical model in spherical coordinates and its application[J]. Acta Oceanologica Sinica, 27(2): 1-7.
6 袁业立, 华锋, 潘增弟, 等, 1992a.LAGFDWAM 海浪数值模式Ⅱ: 区域性特征线嵌人格式及其应用[J].海洋学报, 14(6): 12-24. YUAN YELI, HUA FENG, PAN ZENGDI, et al, 1992a. LAGFDWAM wave numerical model II: Regional characteristic inlaid computational scheme and its application[J]. Acta Oceanologica Sinica, 14(6): 12-24.
7 袁业立, 潘增弟, 华锋, 等, 1992b. LAGFDWAM 海浪数值模式I: 基本物理模型[J]. 海洋学报, 14(5): 1-7. YUAN YELI, PAN ZENGDI, HUA FENG, et al, 1992b. LAGFDWAM wave numerical model I: Foundamental phisical analog[J]. Acta Oceanologica Sinica, 14(5): 1-7.
8 袁业立, 华锋, 潘增弟, 等, 1993. 耗散源函数及LAGFD-WAM海浪数值模式的改进[J]. 海洋与湖沼, 24(4): 367-376. YUAN YELI, HUA FENG, PAN ZENGDI, et al, 1993. Dissipation source function and improvement of LAGFD- WAM wave numerical model[J]. Oceanologia Et Limnologia Sinica, 24(4): 367-376.
9 袁业立, 乔方利, 华锋, 等, 1999. 近海环流数值模式的建立, 部分1: 海波的搅拌和波流相互作用[J]. 水动力学研究与进展(A辑), 14(4(B)): 1-8. YUAN YELI, QIAO FANGLI, HUA FENG, et al, 1999. The set up of nearshore circulation current model, Part Ⅰ: The wave mixing and interaction of wave and current[J]. Journal of Hydrodynamics (A), 14(4(B)): 1-8.
10 袁业立, 乔方利, 2006. 海洋动力系统与MASNUM海洋数值模式体系[J].自然科学进展, 16(10): 1257-1267. YUAN YELI, QIAO FANGLI, 2006. Ocean dynamic system and MASNUM ocean numerical model system[J]. Progress in Natural Science, 16(10): 1257-1267.
11 EUROPEAN CENTER FOR MEDIUM-RANGE WEATHER FORECASTS, 2014. Part Ⅶ: Ecmwf Wave Model[R/OL]. [2014-03-06]. http://www.ecmwf.int/sites/default/files/IFS_ CY40R1_Part7.pdf
12 HASSELMANN S, HASSELMANN K, 1985a. Computations and parameterizations of the nonlinear energy transfering gravity wavespectrum: Part Ⅱ: Parameterization of the nonlinear energy transfer for application in wave models[J]. J Phys Oceanogr, 15: 1378-1391.
13 HASSELMANN S, HASSELMANN K, 1985b. Computations and parameterizations of the nonlinear energy transfering gravity wavespectrum: Part Ⅰ: A new method for efficient computations of the exact nonlinear transfer integral[J]. J Phys Oceanogr, 15: 1369-1377.
14 HASSELMANN S, HASSELMANN K, BAUER E, 1988. The WAM Model—A third generation ocean wave prediction mode1[J]. J Phys Oceanogr, 18(2): l775-1810.
15 TENG YONG, YANG YONGZENG, QIAO FANGLI, et al, 2009. Energy budget of surface waves in the global ocean[J]. Acta Oceanologica Sinica, 28(3): 5-10.
Outlines

/