Marine Geomorphology

The mophodynamic evolution of Zhelin tidal inlets

  • OU Suying ,
  • LUO Kaiwen ,
  • TIAN Feng
Expand
  • State-province Joint Engineering Laboratory of Estuarine Hydraulic Technology, Institute of Estuarine and Coastal Research, Sun Yat-sen University, Guangzhou 510275, China

Received date: 2014-11-03

  Revised date: 2015-07-14

  Online published: 2016-02-29

Supported by

The morphodynamic model of tidal inlets and response to the reclamation in South China (13lgpy23)

Abstract

Tidal inlet, which connects water inside and outside a bay, and maintains water exchange and channel’s navigation, is the core and foundation of an inlet system. Based on observational data, sea charts and topographic maps, the hydrodynamic and sediment transport processes affected by natural and human activities in Zhelin Bay were studied with SELFE (semi-implicit Eulerian-Lagrangian finite-element) model, and the evolutions of the tidal inlets were revealed. It was confirmed that tidal areas of Zhelin Bay with 125 km2 before the reclamation were independent and large for each inlet, whose stability was maintained. After the 1970s, the reclamation made the tidal water areas dropped to 50%, the hydrodynamic structure of tidal inlets changed accordingly, and the suspended sediments from the outside of the bay transported into Zhelin Lagoon and deposited into the Sanbaimen Channel. The tidal area of Xiaojinmen Inlet changed little, so the hydrodynamic and sediment transport of inlet was still ebb-tidal dominant. The circulation of Xiaojinmen Inlet was enhanced, which resulted in the adjustment of erosion and deposition. The tidal area induced by Dajinmen Inlet dropped 1/3 to 40 km2, which weakened the asymmetry of flow velocity. The circulation of Dajinmen Inlet promoted the deposition in the west and the erosion in the east of the inlet section. The tidal area of Xiaomen Inlet collapsed by more than half, which resulted in narrowed inlet width, extended length and shallower water depth; and the circulation between Dajinmen Inlet and Xiaomen Inlet intensified the deposition and instability of Xiaomen Inlet.

Cite this article

OU Suying , LUO Kaiwen , TIAN Feng . The mophodynamic evolution of Zhelin tidal inlets[J]. Journal of Tropical Oceanography, 2016 , 35(2) : 83 -92 . DOI: 10.11978/2014129

References

[1] 蔡爱智, 1994. 粤东柘林湾的泥沙来源与沉积环境[J]. 厦门大学学报(自然科学版), 33(4): 515–520. CAI AIZHI, 1994. The source and environment of sediment in Zhelin bay of eastern Guangdong Province [J]. Journal of Xiamen University (Natural Science), 33(4): 515–520 (in Chinese).
[2] 高抒, 2008. 潮汐汊道形态动力过程研究综述[J]. 地球科学进展, 23(12): 1237–1248. GAO SHU, 2008. Morphodynamic processes of tidal inlets: A review [J]. Advances in Earth Science, 23(12): 1237–1248 (in Chinese).
[3] 龚文平, SHEN J, 陈斌, 2007. 用一维水力学方程求取澙湖水位及潮汐汊道断面流速——以海南陵水新村港为例[J]. 台湾海峡, 26: 301–313. GONG WENPING, SHEN JIAN, CHEN BIN, 2007. Obtaining water elevation in the lagoon and cross-sectionally averaged velocity of the tidal inlet by using one-dimensional hydraulic equation—A case study in Xincun inlet [J]. Journal of Oceanography in Taiwan Strait, 26: 301–313 (in Chinese).
[4] 龚文平, 王道儒, 2008. 潮汐汊道均衡断面面积计算与稳定性分析中的问题——以海南陵水新村为例[J]. 热带海洋学报, 27(4): 31–41. GONG WENPING, WANG DAORU, 2008. Stability analysis and equilibrium area calculation of tidal inlet—A case study in Xincun inlet, Linshui, Hainan Island [J]. Journal of Tropical Oceanography, 27(4): 31–41(in Chinese).
[5] 贾建军, 高抒, 薛允传, 2003. 山东荣成月湖潮汐汊道的时间-流速不对称特征[J]. 海洋学报: 中文版, 25(3): 68–76. JIA JIANJUN, GAO SHU, XUE YUNCHUAN, 2003. Patterns of time-velocity asymmetry at the Yuehu inlet, Shandong Peninsula, China [J]. Acta Oceanologica Sinica, (3): 68–76 (in Chinese).
[6] 蒋睢耀, 1993. 三百门港泥沙淤积研究[J]. 水道港口, (03): 28–35. JIANG JUYAO, 1993. Study on the sediment siltation of Sanbaimen Harbour [J]. Journal of Waterway and Harbor, (03): 28–35 (in Chinese).
[7] 李春初, 应秩甫, 杨干然, 等, 1990. 粤西水东湾潮汐通道——落潮三角洲的动力地貌过程[J]. 海洋工程, 8(2): 78–88. LI CHUNCHU, YING ZHIFU, YANG GANRAN, et al, 1990. Morphodynamic processes of tidal inlet and ebb-tidal delta in the barrier-lagoon system, Shuidong area, west Guangdong Province [J]. The Ocean Engineering, 8(2): 78–88 (in Chinese).
[8] 李孟国, 郑敬云, 2007. 中国海域潮汐预报软件Chinatide的应用[J]. 水道港口, 28(1): 65–68. LI MENGGUO, ZHENG JINGYUN, 2007. Introduction to China tide software for tide prediction in China seas [J]. Journal of Waterway and Harbor, 28(1): 65–68 (in Chinese).
[9] 陆永军, 季荣耀, 左利钦, 等, 2007. 海湾型潮汐通道中大型深水港开发的水沙问题研究[J]. 水利学报, (12): 1426–1436. LU YONGJUN, JI RONGYAO, ZUO LIQIN, et al, 2007. Study on hydrodynamic and sedimentation problems in development of harbors located at inlet of tidal bay [J]. Journal of Hydraulic Engineering, (12): 1426–1436 (in Chinese).
[10] 任美锷, 张忍顺, 1984. 潮汐汊道的若干问题[J]. 海洋学报, 6(3): 352–360.
[11] 田向平, 李春初, 2008. 潟湖潮汐通道水力特性与治理[J]. 海洋通报, 25(4): 9–15. TIAN XIANGPIN, LI CHUNCHU, 2008. Lagoon inlet hydraulic characteristic and transformation [J]. Marine Science Bulletin, 25(4): 9–15(in Chinese).
[12] 谢东风, 高抒, 潘存鸿, 2010. 潮汐汊道系统地貌演化的数值模拟研究[J]. 海洋学报, 32(5): 152–159. XIE DONGFENG, GAO SHU, PAN CUNHONG, 2010. A study of the numerical modeling of tidal inlet morphodynamic evolution [J]. Acta Oceanologica Sinica, 32(5): 152–159 (in Chinese).
[13] 张乔民, 陈欣树, 王文介, 等, 1995. 华南海岸沙坝瀉湖型潮汐汊道口门地貌演变[J]. 海洋学报(中文版), 17(2): 69–77.
[14] 张乔民, 赵焕庭, 宋朝景, 1991. 华南海岸的汇潮水道. 地貌及第四纪研究进展[M]. 北京: 测绘出版社: 211–217.
[15] 张乔民. 华南海岸潮汐汊道P-A关系的分析[J]. 热带海洋, 1987, 6(2): 10–18. ZHANG QIAOMIN, 1987. On P-A relationships of tidal inlets along south China coast [J]. Journal of Tropical Oceanography, 6(2): 10–18 (in Chinese).
[16] BOLLE A, ZHENG B W, AMOS C, et al, 2010. The influence of changes in tidal asymmetry on residual sediment transport in the Western Scheldt [J]. Continental Shelf Research, 30(8): 871-882.
[17] KREEKE J V D, 1990. Can multiple tidal inlets be stable?[J]. Estuarine Coastal & Shelf Science, 30: 261–273.
[18] KREEKE J V D, BROUWER R L, ZITMAN T J, et al, 2008. The effect of a topographic high on the morphological stability of a two-inlet bay system[J]. Coastal Engineering, 55(4): 319–332.
[19] PACHECO A, FERREIRA ó, WILLIAMS J J, et al, 2010. Hydrodynamics and equilibrium of a multiple-inlet system[J]. Marine Geology, 274(1/2/3/4): 32–42.
[20] PENDLETON E A, FITZGERALD D M, 2005. Comparison of the hydrodynamic character of three tidal inlet systems[J]. Coastal Systems & Continental Margins, 8: 83–100.
[21] SALLES P, VOULGARIS G, AUBREY D G, 2005. Contribution of nonlinear mechanisms in the persistence of multiple tidal inlet systems[J]. Estuarine Coastal & Shelf Science, 65(3): 475–491.
[22] ZHANG YINGLONG, BAPTISTA A M, 2008. SELFE: A semi-implicit Eulerian–Lagrangian finite-element model for cross-scale ocean circulation[J]. Ocean Modelling, 21: 71–96.
Outlines

/