There are great quantities of natural gas hydrate beneath seawater, which are giant resources potentially and capable of damaging environment; and special species is also discovered in related area. So, the detection and quantification of an underwater gas release are becoming increasingly important for oceanographic and industrial applications. According to the characters of acoustic attenuation when acoustic wave propagates through bubbles, detection of different flow rate of bubbles was conducted, and result of the relation of bubbles flow rate and acoustic attenuation was presented. In addition, the rising velocity of bubbles was estimated using the relate flow method of two signals received at different depths. Then, the flux of bubbles was inversed by acoustic signal, and the bubble distribution was calculated by the rising velocity and flux, which provided a new method for detection and quantification of undersea bubbles.
QIN Huawei
,
FAN Xianghui
,
CAI Zhen
,
YE Yanlei
. Acoustic detection of flow rate and flux of bubbles in cold spring area of the ocean[J]. Journal of Tropical Oceanography, 2016
, 35(4)
: 35
-39
.
DOI: 10.11978/2015112
[1] 陈忠, 杨华平, 黄奇瑜, 等, 2007. 海底甲烷冷泉特征与冷 泉生态系统的群落结构[J]. 热带海洋学报, 26(6): 73-82. CHEN ZHONG, YANG HUAPING, HUANG CHIYUE, et al, 2007. Characteristics of cold seeps and structures of chemoauto- synthesis-based communities in seep sediments[J]. Journal of Tropical Oceanography, 26(6): 73-82 (in Chinese with English abstract).
[2] 邸鹏飞, 陈庆华, 陈多福, 2012. 海底冷泉渗漏气体流量原位在线测量技术研究[J]. 热带海洋学报, 31(5): 83-87. DI PENGFEI, CHEN QINGHUA, CHEN DUOFU, 2012. In situ on-line measuring device of gas seeping flux at marine seep sites and experimental study[J]. Journal of Tropical Oceanography, 31(5): 83-87 (in Chinese with English abstract).
[3] 樊炜, 2010. 海底热液口温度场声学测量技术研究[D]. 杭州: 浙江大学: 35-38. FAN WEI, 2010. Research on acoustic measurement techniques for determining the temperature distribution around seafloor hydrothermal vents[D]. Hangzhou: Zhejiang University: 35-38 (in Chinese).
[4] 顾兆峰, 刘怀山, 张志珣, 2008. 浅层气逸出到海水中的气泡声学探测方法[J]. 海洋地质与第四纪地质, 28(2): 129-135. GU ZHAOFENG, LIU HUAISHAN, ZHANG ZHIXUN, 2008. Acoustic detecting method for bubbles from shallow gas to sea water[J]. Marine Geology & Quaternary Geology,28(2): 129-135 (in Chinese with English abstract).
[5] 缴健, 何生荣, 李玉婷, 等, 2011. 基于水动力学计算的气泡上升规律研究[J]. 水利信息化, (3): 41-44. JIAO JIAN, HE SHENGRONG, LI YUTING, et al, 2011. Analysis on characteristics of rising air bubbles based on hydrodynamic calculations[J]. Water Resources Informatization, (3): 41-44 (in Chinese with English abstract).
[6] 李奥典, 韦衡, 2012. 静水中气泡上升规律的研究和实验[J]. 山西水利科技, (2): 7-10. LI AODIAN, WEI HENG, 2012. Study and experiment on the law of bubble rising in still water[J]. Shanxi Hydrotechnics, (2): 7-10 (in Chinese with English abstract).
[7] 林莉, 李喜孟, 2009. 超声波频谱分析技术及其应用[M]. 北京: 机械工业出版社: 23-25.
[8] 刘伯胜, 雷家煜, 1993. 水声学原理[M]. 哈尔滨: 哈尔滨工程大学出版社: 168-197.
[9] 马大猷, 2004. 现代声学理论基础[M]. 2版. 北京: 科学出版社: 76.
[10] 聂邦胜, 邱仁贵, 2007. 气泡声学特性探潜方法研究[J]. 海洋技术, 26(4): 51-53. NIE BANGSHENG, QIU RENGUI, 2007. Research on method of detecting submarine to acoustics feature of air bubble[J]. Ocean Technology, 26(4): 51-53 (in Chinese with English abstract).
[11] 孙贵新, 2006. 水中气泡群对水声信号传播的影响[J]. 辽宁师范大学学报(自然科学版), 29(3): 308-310. SUN GUIXIN, 2006. Effect of bubble groups on propagation of hydroacoustic signal[J]. Journal of Liaoning Normal University (Natural Science Edition), 29(3): 308-310 (in Chinese with English abstract).
[12] 王静, 栾锡武, 2009. 海底冷泉甲烷气泡形成与演化[C]//第四届全国沉积学大会论文集. 青岛: 中国地质学会: 2. WANG JING, LUAN XIWU, 2009. Formation and Evolution of the methane bubble in cold seep[C]//Chinese Geophysical Society. The Chinese Geophysics·2009. Qingdao: Geological Society of China: 2 (in Chinese).
[13] 姚文苇, 2008. 气泡对声传播影响的研究[J]. 陕西教育学院学报, 24(1): 107-109. YAO WENWEI, 2008. Effect of bubble on propagation of acoustic wave[J]. Journal of Shaanxi Institute of Education, 24(1): 107-109 (in Chinese with English abstract).
[14] 赵鑫, 金宁德, 王化祥, 2005. 相关流量测量技术发展[J]. 化工自动化及仪表, 32(1): 1-5. ZHAO XIN, JIN NINGDE, WANG HUAXIANG, 2005. Development of cross-correlation flow measurement technique[J]. Control and Instruments in Chemical Industry, 32(1): 1-5 (in Chinese with English abstract).
[15] CHEN C T, MILLERO F J, 1977. Speed of sound in seawater at high pressures[J]. The Journal of the Acoustical Society of America, 62(5): 1129-1135.
[16] JUDD A G, HOVLAND M, DIMITROV L I, et al, 2002. The geological methane budget at Continental Margins and its influence on climate change[J]. Geofluids, 2(2): 109-126.
[17] JUDD A G, 2003. The global importance and context of methane escape from the seabed[J]. Geo-Marine Letters, 23(3-4): 147-154.
[18] KAPODISTRIAS G, DAHL P H, 2000. Effects of interaction between two bubble scatterers[J]. The Journal of the Acoustical Society of America, 107(6): 3006-3017.
[19] KAPODISTRIAS G, DAHL P H, 2001. On scattering from a bubble located near a flat air-water interface: laboratory measurements and modeling[J]. The Journal of the Acoustical Society of America, 110(3): 1271-1281.
[20] ROBERTS H H, WISEMAN W J, HOOPER J, et al, 1999. Surficial gas hydrates of the Louisiana continental slope-initial results of direct observations and in situ data collection[C]//Proceedings of the Annual Offshore Technology Conference. Houston, TX: Offshore Technology Conference: 788-191.
[21] ROBERTS D A, BRADLEY E S, CHEUNG R, et al, 2010. Mapping methane emissions from a marine geological seep source using imaging spectrometry[J]. Remote Sensing of Environment, 114 (3): 592-606.
[22] SCHNEIDER J, 2007. GasQuant-a hydroacoustic gas bubble monitoring system[R]. Victoria, Canada: University of Victoria: 1-15.
[23] VON DEIMLING J S, GREINERT J, CHAPMAN N R, et al, 2010. Acoustic imaging of natural gas seepage in the North Sea: sensing bubbles controlled by variable currents[J]. Limnology and Oceanography-Methods, 8(5): 155-171.
[24] WASHBURN L, JOHNSON C, GOTSCHALK C C, et al, 2001. A gas-capture buoy for measuring bubbling gas flux in oceans and lakes[J]. Journal of Atmospheric and Oceanic Technology, 18(8): 1411-1420.