Journal of Tropical Oceanography >
Geostrophic transport of the Indonesian Throughflow estimated by using the Argo data
Received date: 2009-04-06
Revised date: 2009-08-05
Online published: 2010-02-05
Supported by
中国科学知识创新工程重要方向项目(印度洋-南海-西太平洋物理海洋学研究);国家重点基础研究规划项目(2007CB411800);国家自然科学基金面上项目(40775054)
The authors estimate the geostrophic velocities and transports between 0 and 1000 m along 114.5 ΟE section, which is located at the exit of the Indonesian Throughflow (ITF), by using the Argo data over 2003-2007. The annual-mean transport based on Argo is 4.2 Sv (1 Sv = 106m3.s-1) between 9.5 Ο-18.5 ΟS, which is 0.5 Sv larger than that based on WOA05 but close to previous estimations along the IX1 section. The seasonal variation of the ITF transport estimated by using the Argo data agrees well with that by WOA05, with the maximum transport of about 10 Sv in July; however, there is a large discrepancy between the two data sets in winter when the transport is small. The authors also investigate the effects of salinity difference and lack of observation to the south of 114.5 ΟE section on the estimation of the ITF transport. They find that better salinity observation can improve the estimation, while the lack of observation to the south of 114.5 ΟE section has little impact on the annual-mean ITF transport. Therefore, Argo data can be used as a valid measurement for estimating the ITF transport, especially its annual-mean amount.
Key words: Argo float; Indonesian Throughflow; geostrophic transport
LIU Xiang-cui , LIU Hai-long , LI Wei , LIN Peng-fei . Geostrophic transport of the Indonesian Throughflow estimated by using the Argo data[J]. Journal of Tropical Oceanography, 2009 , 28(5) : 75 -82 . DOI: 10.11978/j.issn.1009-5470.2009.05.075
[1] GODFREY J S. The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: A review[J]. J Geophys Res, 1996,101:12 217—12 237.
[2] WIJFFELS S E,MEYERS G,STUART G J. A 20-Yr average of the Indonesian Throughflow: Regional currents and the Interbasin exchange[J]. J Phys Oceanogr, 2008,38(9): 1965—1978.
[3] HIRST A C, GODFREY J S. The role of the Indonesian Throughflow in a global GCM[J]. J Phys Oceanogr, 1993, 23:1057—1086.
[4] LEE T,FUKUMORI I,MENEMENLIS D,et al. Effects of the Indonesian throughflow on the Pacific and Indian Oceans[J]. J Phys Oceanogr,2002,32(5):1404—1429.
[5] SCHNEIDER N,BARNETT T. Indonesian throughflow in a coupled general circulation model[J]. J Geophys Res,1997,102:12341—12358.
[6] SCHNEIDER N. The Indonesian Throughflow and the global climate system[J]. J Climate, 1998,11: 676—689.
[7] WAJSOWICZ R C, SCHNEIDER E K. The Indonesian Throughflow’s effect on global climate determined from the COLA coupled climate system[J]. J Climate, 2001,14: 3029—3042.
[8] QIU B, MAO M, KASHINO Y. Intraseasonal Variability in the Indo-Pacific Throughflow and the Regions Surrounding the Indonesian Seas[J]. Journal of Physical Oceanography, 1999, 29: 1599—1618.
[9] MEYERS G,BAILEY R J,WORBY A P. Geostrophic transport of Indonesian throughflow[J]. Deep-Sea Res, Part I, 1995, 42: 1163—1174.
[10] MEYERS G. Variation of Indonesian throughflow and the El Nino-Southern Oscillation[J]. J Geophys Res, 1996,101:12255—12263.
[11] GORDON A L,SUSANTO R D. Banda Sea surface-layer divergence[J]. Ocean Dynamics, 2001,51:2—10.
[12] GORDON A L,SUSANTO R D,FIELD A. Throughflow within Makassar Strait[J]. Geophysical Research Letters, 1999, 26(21):3325—3328.
[13] SPRINTALL J, WIJFFELS S, GORDON A L, et al. INSTANT: A new international array to measure the Indonesian throughflow[J]. Eos Trans AGU, 2004,85(39): 369—376.
[14] LIU H L,LI W,ZHANG X H. Climatology and Variability of the Indonesian Throughflow in an Eddy-permitting Oceanic GCM[J]. Adv Atmos Sci, 2005,22:496—508.
[15] SONG Q, VECCHI G A, ROSATI A J. The Role of the Indonesian Throughflow in the Indo–Pacific Climate Variability in the GFDL Coupled Climate Model[J]. Journal of Climate, 2007,20: 2434—2451.
[16] SPRINTALL J, WIJFFELS S, CHERESKIN T, et al. The JADE and WOCE I10/IR6 Throughflow sections in the Southeast Indian Ocean. Part 2: Velocity and transports[J]. Deep-Sea Res, Part II, 2002,49: 1363—1389.
[17] LIU Y, MING FENG, JOHN CHURCH, et al. Effect of salinity on estimating geostrophic transport of the Indonesian Throughflow along the IX1 XBT section[J]. J Oceanography, 2005,61:795—801.
[18] CRESSMAN G P. An operational objective analysis system[J]. Mon Wea Rev,1959,87:367—374.
[19] LOCARNINI R A, MISHONOV A V, ANTONOV J I, et al. World Ocean Atlas 2005, Volume 1: Temperature [C] // Levitus S. NOAA Atlas NESDIS 61, U.S. Government Printing Office, Washington, D.C., 2006: 182.
[20] ANTONOV J I, LOCARNINI R A, BOYER T P, et al. World Ocean Atlas 2005, Volume 2: Salinity[C] // Levitus S. NOAA Atlas NESDIS 62, U.S. Government Printing Office, Washington, D.C., 2006: 182.
/
〈 |
|
〉 |