Marine Geology

Basin-mountain evolution, thermo-tectonic history and surface crustal recycling processes of the northern margin of the South China Sea

  • YAN Yi ,
  • ALMATARI Ali Ahmed Ali ,
  • TIAN Zhixian ,
  • QIAN Kun
Expand
  • 1. Key Laboratory of Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2016-02-23

  Revised date: 2016-04-19

  Online published: 2016-12-15

Supported by

National Natural Science Foundation of China (41476036)

Abstract

The continental margin of South China has a long and complex history that dates back to the Mesozoic when it formed part of an active “Andean type” margin associated with north-directed subduction of the Paleo-Pacific Plate. In the Paleocene, the margin experienced significant extension, leading to a complex passive margin. Whilst considerable research effort has been directed at explaining extension across the South China margin, and the age and mechanisms for opening of the South China Sea, relatively little attention has been paid to the impact of these processes on the evolution of the exposed South China continental margin. Coupling between the sedimentation in a basin and the unroofing-erosion in the surrounding orogens makes it possible to understand the basin-mountain evolution, thermo-tectonic history and surface crustal recycling processes by studying the detritus composition, geochemical characteristics of the basin sediments and the timing and rates of exhumation surrounding the orogens. The purpose of this study is to document the timing and rates of exhumation across the Pearl River Mouth region of the South China margin and the provenance of the basins in the northern margin of the South China Sea. Zircon fission track (ZFT), apatite fission track (AFT) and (U-Th)/He thermochronometric data show that the timing and pattern of rock uplift and erosion do not fit conventional passive margin landscape models that require youngest exhumation ages to be concentrated at or close to the rifted margin. The history of South China margin is more complex aided by weakened crust from the active margin period that immediately preceded rifting and opening of the South China Sea. Generally, the higher εNd values dominated by Yanshanian (180~67 Ma) zircon grains in sediments deposited prior to 25 Ma indicate the detritus in the northern margin of the South China Sea mainly eroded from Phanerozoic granitic sources exposed in coastal South China. Whereas the lower εNd values dominated by the Indosinian (257-205 Ma) zircon grains together with Yanshanian, Proterozoic and Archean population in the Miocene rock suggest that the main sources had evolved to inland South China by 25 Ma.

Cite this article

YAN Yi , ALMATARI Ali Ahmed Ali , TIAN Zhixian , QIAN Kun . Basin-mountain evolution, thermo-tectonic history and surface crustal recycling processes of the northern margin of the South China Sea[J]. Journal of Tropical Oceanography, 2016 , 35(6) : 46 -57 . DOI: 10.11978/2016018

References

[1] 陈长民, 施和生, 许仕策, 等, 2003. 珠江口盆地(东部)第三系油气藏形成条件[M]. 北京: 科学出版社. CHEN CHANGMIN, SHI HESHENG, XU SHICE, et al, 2003. The Pearl River Mouth Basin (eastern) Tertiary oil and gas reservoirs formation conditions[M]. Beijing: Science Press (in Chinese).
[2] 陈培荣, 华仁民, 章邦桐, 等, 2002. 南岭燕山早期后造山花岗岩类: 岩石学制约和地球动力学背景[J]. 中国科学D辑: 地球科学, 32(4): 279–289. CHEN PEIRONG, HUA RENMIN, ZHANG BANGTONG, et al, 2002. Yanshan Nanling early post orogenic granite: Petrological constraints and geodynamic background[J]. China Science: Series D, 32(4): 279–289 (in Chinese).
[3] 程裕淇, 1994. 中国区域地质概论[M]. 北京: 地质出版社. CHENG YUQI, 1994. Concise regional geology of China[M]. Beijing: Geological Publishing House (in Chinese).
[4] 龚再升, 1997. 南海北部大陆边缘盆地分析与油气聚集[M]. 北京: 科学出版社. GONG ZAISHENG, 1997. Continental margin basin analysis and hydrocarbon accumulation of the northern South China Sea[M]. Beijing: Science Press (in Chinese).
[5] 黄虑生, 1999. 珠江口盆地第三系生物地层框架[J]. 中国海上油气: 地质, 13(6): 406–415. HUANG LUSHENG, 1999. Tertiary biostratigraphic framework of Pearl River Mouth Basin[J]. China Offshore Oil and Gas: Geology, 13(6): 406–415 (in Chinese).
[6] 金秉福, 林振宏, 杨群慧, 等, 2002. 沉积矿物学在陆缘海环境分析中的应用[J]. 海洋地质与第四纪地质, 22(3): 113–118. JIN BINGFU, LIN ZHENHONG, YANG QUNHUI, et al, 2002. Application of sedimentary mineralogy to the environmental analysis in marginal seas[J]. Marine Geology & Quaternary Geology, 22(3): 113–118 (in Chinese).
[7] 李春峰, 汪品先, FRANKE D, 等, 2009. 南海张裂过程及其对晚中生代以来东南亚构造的启示——IODP建议书735-Full介绍[J]. 地球科学进展, 24(12): 1339–1351. LI CHUNFENG, WANG PINXIAN, FRANKE D, et al, 2009. Opening of the South China Sea and its implications for Southeast Asian tectonics since the late Mesozoic[J]. Advances in Earth Science, 24(12): 1339–1351 (in Chinese).
[8] 李思田, 林畅松, 张启明, 等, 1998. 南海北部大陆边缘盆地幕式裂陷的动力过程及10 Ma以来的构造事件[J]. 科学通报, 43(8): 797–810. LI SITIAN, LIN CHANGSONG, ZHANG QIMING, et al, 1998. The dynamic process of rifting and tectonic events since 10 Ma in northern continental margin basin of South China Sea[J]. Chinese Science Bulletin, 43(8): 797–810 (in Chinese).
[9] 李献华, 周汉文, 刘颖, 等, 1999. 桂东南钾玄质侵入岩带及其岩石学和地球化学特征[J]. 科学通报, 44(18): 1992–1998. LI XIANHUA, ZHOU HANWEN, LIU YING, et al, 1999. Shoshonitic intrusive rock belt in southeast Guangxi and its petrological and geochemical characteristics[J]. Chinese Science Bulletin, 44(18): 1992–1998 (in Chinese).
[10] 刘光鼎, 1992. 中国海区及邻域地质地球物理特征[M]. 北京: 科学出版社: 93–97. LIU GUANGDING, 1992. Geologic- geophysic features of China seas and adjacent regions[M]. Beijing: Science Press: 93–97 (in Chinese).
[11] 刘和甫, 2001. 盆地–山岭耦合体系与地球动力学机制[J]. 地球科学?中国地质大学学报, 26(6): 581–596. LIU HEFU, 2001. Geodynamic scenario of coupled basin and mountain system[J]. Earth Science?Journal of China University of Geosciences, 26(6): 581–596 (in Chinese).
[12] 秦国权, 2000. 论“关于珠江口盆地BY7–1–1井上、下第三系界线的讨论”[J]. 地层学杂志, 24(S1): 387–393. QIN GUOQUAN, 2000. Comments on “Discussion on the upper–lower Tertiary boundary in well BY7–1–1 of the Pearl River Mouth Basin”[J]. Journal of Stratigraphy, 24(S1): 387–393 (in Chinese).
[13] 茹克, 1988. 南海北部边缘叠合式盆地的发育及其大地构造意义[J]. 石油与天然气地质, 9(1): 22–31. RU KE, 1988. The development of superimposed basin on the northern margin of the South China Sea and its tectonic significance[J]. Oil & Gas Geology, 9(1): 22–31 (in Chinese).
[14] 邵磊, 雷永昌, 庞雄, 等, 2005. 珠江口盆地构造演化及对沉积环境的控制作用[J]. 同济大学学报(自然科学版), 33(9): 1177–1181. SHAO LEI, LEI YONGCHANG, PANG XIONG, et al, 2005. Tectonic evolution and its controlling for sedimentary environment in Pearl River Mouth Basin[J]. Journal of Tongji University (Natural Science), 33(9): 1177–1181 (in Chinese).
[15] 邵磊, 李献华, 汪品先, 等, 2004. 南海渐新世以来构造演化的沉积记录——ODP1148站深海沉积物中的证据[J]. 地球科学进展, 19(4): 539–544. SHAO LEI, LI XIANHUA, WANG PINXIAN, et al, 2004. Sedimentary record of the tectonic evolution of the South China Sea since the Oligocene – Evidence from deep sea sediments of ODP Site 1148[J]. Advances in Earth Science, 19(4): 539–544 (in Chinese).
[16] 舒良树, 周新民, 邓平, 等, 2004. 中国东南部中、新生代盆地特征与构造演化[J]. 地质通报, 23(9/10): 876–884. SHU LIANGSHU, ZHOU XINMIN, DENG PING, et al, 2004. Geological features and tectonic evolution of Meso-Cenozoic basins in southeastern China[J]. Geological Bulletin of China, 23(9/10): 876–884 (in Chinese).
[17] 孙珍, 庞雄, 钟志洪, 等, 2005. 珠江口盆地白云凹陷新生代构造演化动力学[J]. 地学前缘, 12(4): 489–498. SUN ZHEN, PANG XIONG, ZHONG ZHIHONG, et al, 2005. Dynamics of Tertiary tectonic evolution of the Baiyun Sag in the Pearl River Mouth Basin[J]. Earth Science Frontiers, 12(4): 489–498 (in Chinese).
[18] 汪品先, 1995. 十五万年来的南海[M]. 上海: 同济大学出版社. WANG PINXIAN, 1995. The South China Sea since one hundred and fifty thousand years[M]. Shanghai: Tongji University Press (in Chinese).
[19] 吴国瑄, 覃军干, 茅绍智, 2003. 南海深海相渐新统孢粉记录[J]. 科学通报, 48(17): 1868–1871. WU GUOXUAN, TAN JUNGAN, MAO SHAOZHI, 2003. Deep sea facies of Oligocene sporopollen records in South China Sea[J]. Chinese Science Bulletin, 48(17): 1868–1871 (in Chinese).
[20] 吴堑虹, 刘厚昌, 2002. (U-Th)/He定年——低温热年代学研究的一种新技术[J]. 地球科学进展, 17(1): 126–131. WU QIANHONG, LIU HOUCHANG, 2002. (U-Th)/He dating – A new method of low-temperature thermochronometry[J]. Advance in Earth Sciences, 17(1): 126–131 (in Chinese).
[21] 肖庆辉, 李晓波, 贾跃明, 等, 1995. 当代造山带研究中值得重视的若干前沿问题[J]. 地学前缘, 2(1/2): 43–50. XIAO QINGHUI, LI XIAOBO, JIA YUEMING, et al, 1995. Frontiers on orogenic belt researches[J]. Earth Science Frontiers, 2(1/2): 43–50 (in Chinese).
[22] 阎贫, 刘海龄, 2002. 南海北部陆缘地壳结构探测结果分析[J]. 热带海洋学报, 21(2): 1–12. YAN PIN, LIU HAILING, 2002. Analysis on deep crust sounding results in northern margin of South China Sea[J]. Journal of Tropical Oceanography, 21(2): 1–12 (in Chinese).
[23] 闫义, 林舸, 王岳军, 等, 2002. 盆地陆源碎屑沉积物对源区构造背景的指示意义[J]. 地球科学进展, 17(1): 85–90. YAN YI, LIN GE, WANG YUEJUN, et al, 2002. The indication of continental detrital sediment to tectonic setting[J]. Advance in Earth Sciences, 17(1): 85–90 (in Chinese).
[24] 闫义, 夏斌, 林舸, 等, 2005. 南海北缘新生代盆地沉积与构造演化及地球动力学背景[J]. 海洋地质与第四纪地质, 25(2): 53–61. YAN YI, XIA BIN, LIN GE, et al, 2005. The sedimentary and tectonic evolution of the basins in the north margin of the South China Sea and geodynamic setting[J]. Marine Geology & Quaternary Geology, 25(2): 53–61 (in Chinese).
[25] 姚伯初, 曾维军, 陈艺中, 等, 1994. 南海北部陆缘东部的地壳结构[J]. 地球物理学报, 37(1): 27–35. YAO BOCHU, ZENG WEIJUN, CHEN YIZHONG, et al, 1994. The crustal structure in the eastern part of the northern margin of the South China Sea[J]. Acta Geophysica Sinica, 37(1): 27–35 (in Chinese).
[26] 姚伯初, 1996. 南海海盆新生代的构造演化史[J]. 海洋地质与第四纪地质, 16(2): 1–13. YAO BOCHU, 1996. Tectonic evolution of the South China Sea in Cenozoic[J]. Marine Geology & Quaternary Geology, 16(2): 1–13 (in Chinese).
[27] 殷鸿福, 吴顺宝, 杜远生, 等, 1999. 华南是特提斯多岛洋体系的一部分[J]. 地球科学?中国地质大学学报, 24(1): 1–12. YIN HONGFU, WU SHUNBAO, DU YUANSHENG, et al, 1999. South China defined as part of Tethyan archipelagic ocean system[J]. Earth Science?Journal of China University of Geosciences, 24(1): 1–12 (in Chinese).
[28] 张渝昌, 1997. 中国含油气盆地原型分析[M]. 南京: 南京大学出版社: 398–418. ZHANG YUCHANG, 1997. The prototype analysis of petroliferous basin in China[M]. Nanjing: Nanjing University Press: 398–418 (in Chinese).
[29] 赵泉鸿, 汪品先, 1999. 南海第四纪古海洋学研究进展[J]. 第四纪研究, 19(6): 481–501. ZHAO QUANHONG, WANG PINXIAN, 1999. Progress in Quaternary paleoceanography of the South China Sea: A review[J]. Quaternary Sciences, 19(6): 481–501 (in Chinese).
[30] 周祖翼, 许长海, REINERS P W, 等, 2003. 大别山天堂寨地区晚白垩世以来剥露历史的(U-Th)/He和裂变径迹分析证据[J]. 科学通报, 48(6): 598–602. ZHOU ZHUYI, XU CHANGHAI, REINERS P W, et al, 2003. The exhumation history of (U-Th)/He and fission track analysis of evidence since Late Cretaceous in Tiantangzhai area Dabie Mountain[J]. Chinese Science Bulletin, 48(6): 598–602 (in Chinese).
[31] 邹和平, 1995. 陆缘扩张型地洼盆地系及其形成机制探讨[J]. 大地构造与成矿学, 19(4): 303–313. ZOU HEPING, 1995. On the Diwa basin system of continental margin spreading type and its genetic mechanism[J]. Geotectonica et Metallogenia, 19(4): 303–313 (in Chinese).
[32] BALESTRIERI M L, STUART F M, PERSANO C, et al, 2005. Geomorphic development of the escarpment of the Eritrean margin, southern Red Sea from combined apatite fission-track and (U–Th)/He thermochronometry[J]. Earth and Planetary Science Letters, 231(1/2): 97–110.
[33] BOATNER L A, 2002. Synthesis, structure, and properties of Monazite, Pretulite, and Xenotime[J]. Reviews in Mineralogy & Geochemistry, 48(1): 87–121.
[34] BRIAIS A, PATRIAT P, TAPPONNIER P, 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 98(B4): 6299–6328.
[35] BRUGUIER O, LANCELOT J R, MALAVIEILLE J, 1997. U–Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): Provenance and tectonic correlations[J]. Earth and Planetary Science Letters, 152(1/4): 217–231.
[36] CHEN JIANGFENG, JAHN B M, 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence[J]. Tectonophysics, 284(1/2): 101–133.
[37] CLARK M K, HOUSE M A, ROYDEN L H, et al, 2005. Late Cenozoic uplift of southeastern Tibet[J]. Geology, 33(6): 525–528.
[38] CLIFT P D, 2006. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean[J]. Earth and Planetary Science Letters, 241(3/4): 571–580.
[39] CLIFT P D, BLUSZTAJN J, NGUYEN A D, 2006. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam[J]. Geophysical Research Letters, 33(19): L19403.
[40] CLIFT P, LEE J I, CLARK M K, et al, 2002. Erosional response of South China to arc rifting and monsoonal strengthening: a record from the South China Sea[J]. Marine Geology, 184(3/4): 207–226.
[41] CULLERS R L, 1994. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian- Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA[J]. Geochimica et Cosmochimica Acta, 58(22): 4955–4972.
[42] DAVIS G A, ZHENG YADONG, WANG CONG, et al, 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China[J]. GSA Memoirs, 194: 171–197.
[43] DICKINSON W R, BEARD L S, BRAKENRIDGE G R, et al, 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting[J]. Geological Society of America Bulletin, 94(2): 222–235.
[44] DICKINSON W R, SUCZEK C A, 1979. Plate tectonics and sandstone composition[J]. AAPG Bulletin, 63(12): 2164–2182.
[45] DODSON M H, 1973. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology, 40(3): 259–274.
[46] GALLAGHER K, BROWN R, JOHNSON C, 1998. Fission track analysis and its applications to geological problems[J]. Annual Review of Earth and Planetary Sciences, 26(1): 519–572.
[47] GILDER S A, GILL J, COE R S, et al, 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China[J]. Journal of Geophysical Research, 101(B7): 16137–16154.
[48] GOLDSTEIN S L, O'NIONS R K, HAMILTON P J, 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems[J]. Earth and Planetary Science Letters, 70(2): 221–236.
[49] HACKER B R, WANG QINGCHEN, 1995. Ar/Ar geochronology of ultrahigh-pressure metamorphism in central China[J]. Tectonics, 14(4): 994–1006.
[50] HAYES D E, 1980. The Tectonic and geologic evolution of Southeast Asian seas and islands[M]. Washington, DC: American Geophysical Union: 89–104.
[51] HENRY P, DELOULE E, MICHARD A, 1997. The erosion of the Alps: Nd isotopic and geochemical constraints on the sources of the peri-Alpine molasse sediments[J]. Earth and Planetary Science Letters, 146(3/4): 627–644.
[52] HOUSE M A, WERNICKE B P, FARLEY K A, et al, 1997. Cenozoic thermal evolution of the central Sierra Nevada, California, from (U-Th)/He thermochronometry[J]. Earth and Planetary Science Letters, 151(3/4): 167–179.
[53] KIRBY E, REINERS P W, KROL M A, et al, 2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: inferences from 40Ar/39Ar and (U-Th)/He thermo?chronology[J]. Tectonics, 21(1): 1-1–1-20.
[54] KOHN B P, PILLANS B, MCGLONE M S, 1992. Zircon fission track age for middle Pleistocene Rangitawa Tephra, New Zealand: Stratigraphic and paleoclimatic significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 95(1/2): 73–94.
[55] KROL M A, ZEITLER P K, POUPEAU G, et al, 1996. Temporal variations in the cooling and denudation history of the Hunza plutonic complex, Karakoram Batholith, revealed by 40Ar/39Ar thermochronology[J]. Tectonics, 15(2): 403–415.
[56] LAN QING, YAN YI, HUANG CHIYUE, et al, 2014. Tectonics, topography, and river system transition in East Tibet: Insights from the sedimentary record in Taiwan[J]. Geochemistry, Geophysics, Geosystems, 15(9): 3658–3674.
[57] LAN QING, YAN YI, HUANG CHIYUE, et al, 2016. Topographic architecture and drainage reorganization in Southeast China: Zircon U-Pb chronology and HF isotope evidence from Taiwan[J]. Gondwana Research, 36: 376–389.
[58] LI CHUNFENG, XU XING, LIN JIAN, et al, 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 15(12): 4958–4983.
[59] LI XIANHUA, 2000. Cretaceous magmatism and lithospheric extension in Southeast China[J]. Journal of Asian Earth Sciences, 18(3): 293–305.
[60] LI XIANHUA, WEI GANGJIAN, SHAO LEI, et al, 2003. Geochemical and Nd isotopic variations in sediments of the South China Sea: A response to Cenozoic tectonism in SE Asia[J]. Earth and Planetary Science Letters, 211(3/4): 207–220.
[61] LI ZHENGXIANG, LI XIANHUA, 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 35(2): 179–182.
[62] LIU ZHIFEI, COLIN C, TRENTESAUX A, et al, 2004. Erosional history of the eastern Tibetan Plateau since 190 kyr ago: Clay mineralogical and geochemical investigations from the southwestern South China Sea[J]. Marine Geology, 209(1/4): 1–18.
[63] MCCULLOCH M T, WASSERBURG G J, 1978. Sm-Nd and Rb-Sr chronology of continental crust formation[J]. Science, 200(4345): 1003–1011.
[64] MURPHY J B, HAMILTON M A, 2000. Orogenesis and basin development: U-Pb detrital zircon age constraints on evolution of the Late Paleozoic St. Marys Basin, central mainland Nova Scotia[J]. The Journal of Geology, 108(1): 53–71.
[65] NAJMAN Y M R, PRINGLE M S, JOHNSON M R W, et al, 1997. Laser 40Ar/39Ar dating of single detrital muscovite grains from early foreland-basin sedimentary deposits in India: Implications for early Himalayan evolution[J]. Geology, 25(6): 535–538.
[66] PERSANO C, STUART F M, BISHOP P, et al, 2002. Apatite (U–Th)/He age constraints on the development of the Great Escarpment on the southeastern Australian passive margin[J]. Earth and Planetary Science Letters, 200(1/2): 79–90.
[67] QIU XUELIN, YE SANYU, WU SHIMIN, et al, 2001. Crustal structure across the Xisha Trough, northwestern South China Sea[J]. Tectonophysics, 341(1/4): 179–193.
[68] REID A J, FOWLER A P, PHILLIPS D, et al, 2005. Thermochronology of the Yidun Arc, central eastern Tibetan Plateau: Constraints from 40Ar/39Ar K-feldspar and apatite fission track data[J]. Journal of Asian Earth Sciences, 25(6): 915–935.
[69] REINERS P W, EHLERS T A, GARVER J I, et al, 2002. Late Miocene exhumation and uplift of the Washington Cascade Range[J]. Geology, 30(9): 767–770.
[70] REINERS P W, FARLEY K A, 1999. Helium diffusion and (U–Th)/He thermochronometry of titanite[J]. Geochimica et Cosmochimica Acta, 63(22): 3845–3859.
[71] REN JIANYE, TAMAKI K, LI SITIAN, et al, 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics, 344(3/4): 175–205.
[72] RU KE, PIGOTT J D, 1986. Episodic rifting and subsidence in the South China Sea[J]. American Association of Petroleum Geologists Bulletin, 70(9): 1136–1155.
[73] SHI XIAOBIN, BUROV E, LEROY S, et al, 2005. Intrusion and its implication for subsidence: A case from the Baiyun Sag, on the northern margin of the South China Sea[J]. Tectonophysics, 407(1/2): 117–134.
[74] SORKHABI R B, STUMP E, FOLAND K A, et al, 1996. Fission-track and 40Ar/39Ar evidence for episodic denudation of the Gangotri granites in the Garhwal Higher Himalaya, India[J]. Tectonophysics, 260(1/3): 187–199.
[75] TAPPONNIER P, LACASSIN R, LELOUP P H, et al, 1990. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China[J]. Nature, 343(6257): 431–437.
[76] TAYLOR S R, MCLENNAN S M, 1995. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 33(2): 241–265.
[77] THOMSON S N, 1994. Fission track analysis of the crystalline basement rocks of the Calabrian arc, southern Italy: Evidence of oligo-miocene late-orogenic extension and erosion[J]. Tectonophysics, 238(1/4): 331–352.
[78] WANG CHENGSHAN, ZHAO XIXI, LIU ZHIFEI, et al, 2008. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(13): 4987–4992.
[79] WANG E, KIRBY E, FURLONG K P, et al, 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 5(9): 640–645.
[80] WANG YUEJUN, FAN WEIMING, GUO FENG, et al, 2003. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China: Implications for the lithospheric boundary between the Yangtze and Cathaysia Blocks[J]. International Geology Review, 45(3): 263–286.
[81] WARNOCK A C, ZEITLER P K, WOLF R A, et al, 1997. An evaluation of low-temperature apatite U-Th/He thermochro?nometry[J]. Geochimica et Cosmochimica Acta, 61(24): 5371–5377.
[82] YAN YI, CARTER A, XIA BIN, et al, 2009. A fission-track and (U–Th)/He thermochronometric study of the northern margin of the South China Sea: An example of a complex passive margin[J]. Tectonophysics, 474(3/4): 584–594.
[83] YAN YI, XIA BIN, LIN GE, et al, 2007. Geochemical and Nd isotope composition of detrital sediments on the north margin of the South China Sea: Provenance and tectonic implications[J]. Sedimentology, 54(1): 1–17.
[84] ZHENG HONGBO, CLIFT P D, WANG PING, et al, 2013. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(19): 7556–7561.
[85] ZHOU DI, RU KE, CHEN HANZONG, 1995. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 251(1/4): 161–177.


Outlines

/