Orginal Article

Morphology and histology of the digestive system in Girella leonina*

  • CAO Xiao , 1 ,
  • SUN Min 2 ,
  • ZHU Lianghua 1 ,
  • ZHANG Dingyuan 1 ,
  • XU Shanliang , 3
Expand
  • 1. School of Marine Sciences, Ningbo University, Ningbo 315211, China
  • 2. Marine and Fishery Bureau of Linhai, Taizhou 317000, China
  • 3. Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315211, China
Corresponding author: XU Shanliang, Professor. Email:

Received date: 2017-04-11

  Request revised date: 2017-08-15

  Online published: 2018-02-02

Supported by

Public Technology Application Research Projects of Zhejiang Province (2017C32015)

Copyright

热带海洋学报编辑部

Abstract

The organizational structural characteristics of digestive system of fish are closely related to diet. To study the digestive physiological characteristics of reef fish Girella leonine, the organizational structural characteristics of digestive system were investigated by H.E staining. The correlation between the structural characteristics of tissue and the adaptability of diet and environment was discussed. The results are summarized as follows. 1) The esophagus tended to the cavity to form six thick folds, which had obvious striated muscle and mucous cells, and the folds had strongly expansion ability. Mucous cells were distributed between mucosa epithelium and were cone-shaped. 2) “V-shaped” stomach was divided into cardia, gastric body and pylorus. The transverse section of gastric gland was round and the lumen was surrounded by several gland cells. The muscular layer of the stomach was well developed, its inner was annulus structure and the outer was longitudinal structure. The stomach glands were mostly developed in the lamina of gastric body, the gastric mucosa formed many folds and the pyloric stomach had multi-level branch folds. 3) There are more than 150 branched diverticulum in the pyloric, and they can be divided into two branches. The cavity of the cecum was filled with mucosal folds. The epithelium of mucosa was composed of single columnar epithelial cells without goblet cells. 4) Liver was divided into two leaves, which showed a general structure of bony fish in histology. The liver cells were large and polygonal, with a size of nearly 30 μm. 5) The intestine had four convolutions, and the ratio of intestine length to body length was 1.52±0.06, the value was between herbivorous and carnivorous fish. There were lots of goblet cells distributing in the whole intestine. The intestine had well-developed villi of small intestine. The epithelium of the villus base caved into the lamina propria to form the intestinal gland. The gland opened to the adjacent villi base. As the main digestible site, the number and height of the villi were greater than those in the hindgut. In this study, we also discussed the relationship between the histology characteristic and the digestion and absorption of digestive system of Girella leonine. Results showed that the characteristics of digestive system of Girella leonina was typical of omnivorous fish digestive system.

Cite this article

CAO Xiao , SUN Min , ZHU Lianghua , ZHANG Dingyuan , XU Shanliang . Morphology and histology of the digestive system in Girella leonina*[J]. Journal of Tropical Oceanography, 2018 , 37(1) : 20 -26 . DOI: 10.11978/2017040

黑鱾(Girella leonina)隶属鲈形目(Perciformes)、鲈亚目(Percoidei)、鱾科(Girellidae)、鱾属(Girella), 主要分布于西太平洋区的日本群岛至东海南部以及台湾岛附近海域(姚善成 等, 1988; 沈世杰 等, 1993)。黑鱾具有抗病力强, 性情温和易驯养, 耐低氧耐受力强等特点, 且肉质细嫩洁白, 营养丰富, 经济价值较高, 是近海网箱套养的优良品种。目前, 黑鱾已在浙江南部、福建、广东以及台湾等地开始生产性养殖, 主要与大黄鱼等进行网箱混养。
Yagishita等(2003)发现鱾属中存在着草食性与杂食性两种类型, 黑鱾为杂食性鱼类, 同时也好食藻类。黑鱾以小型无脊椎动物等为食, 在冬季则主要以藻类为食, 人工饲养条件下黑鱾可摄食小鱼块、鱼糜或颗粒饲料等(陈舜 等, 2008)。消化道是鱼类食物消化吸收的重要场所, 消化道的组织学研究是认识和探讨鱼类摄食、消化和吸收生理机制的基础和途径之一(王健鑫 等, 2006; 杜佳 等, 2009)。迄今为止, 国内外关于黑鱾的研究甚少, 仅见姚善成等(1988)的鱾鱼种群和地理变异研究, 陈舜等(2008)的网箱养殖试验研究, 孙敏等(2009a、2009b)的消化酶活力和血液指标研究, 肖云朴等(2011)的精子发生学研究和唐道军等(2013)的温度对黑鱾幼鱼耗氧率和排氨率的影响。国外研究则主要集中在鱾属的形态比较, 分类及物种分布方面(Yagishita et al, 19992003; Itoi et al, 2007; Lu et al, 2014)。但至今关于黑鱾的消化道组织结构等尚未见报道。本文采用解剖学及组织学方法对黑鱾消化道进行形态学和组织学研究, 初步了解了黑鱾消化生物学基础资料。

1 材料与方法

黑鱾捕获于南麂岛海域, 暂养至象山港黄避岙的海水网箱内, 实验用鱼为2龄成鱼, 体长范围20~30cm。实验选用外观正常无病无伤的个体12尾, 活体带回实验室暂养, 经生物学测量后, 又随机选6尾进行活体解剖, 取出食道、胃、盲囊、肝脏、肠道, 用锋利刀片切成5mm3的组织块, 经波恩氏液固定24h后, 常规组织切片制作, 切片厚度6μm, 苏木精-伊红(H.E)染色, 在奥林巴斯光学显微镜下摄影并记录相应结果。

2 结果

2.1 食道

黑鱾的消化系统如图1所示, 其食道较长, 前端扩大与口咽腔相连, 后端接入胃。食道腔壁从内向外可分为黏膜层、黏膜下层、肌层和浆膜层4个部分。黏膜层向食道腔内突起形成6个大皱褶, 高度约为800μm (图2a)。黏膜上皮由复层上皮组成, 下层主要为柱状上皮细胞, 上层为扁平细胞, 其上有许多指状突起。黏膜上皮间还分布着黏液细胞, 呈锥形。固有层与黏膜下层之间分界不明显, 不易分辨, 黏膜肌层在黏膜上皮下方的结缔组织中, 它与中层的肌层之间的结缔组织称黏膜下组织(图2b)。黏膜下层薄, 仅为15μm左右, 其中分布着许多动静脉管以及淋巴管等(图2b)。肌层特别发达, 厚约600μm, 全部为骨骼肌。根据肌纤维的排列方式, 除少数部位环肌和纵肌交错混杂外, 一般可分内层的环肌和外层的纵肌, 两者分别厚约450μm和150μm。浆膜层薄, 主要由结缔组织组成, 最外层为扁平上皮细胞。
Fig. 1 Maps of the digestive system and stomach of Girella leonine. 1. Cardia department; 2. Pylorus department; 3. Blind sac department

图1 黑鱾消化系统及胃的示意图
b中1. 贲门部; 2. 幽门部; 3. 盲囊部

Fig. 2 The esophagus, stomach and pyloric caeca histology of Girella leonine. a. The esophagus crosscutting, → showing mucosal folds; b. a partially enlarged figure, showing esophageal cavity wall structures, ← showing mucous epithelium; c. body of stomach, →← showing a large number of gastric gland exist in the lamina propria; d. cardiac stomach, ↑ showing gastric pit and → showing cells in the mucous membrane layer; e. body of stomach, showing the overall structure of the stomach; f. cardiac stomach, showing the hierarchical structure of the cardia of the stomach and mucosal epithelium; g. body of stomach, ↑ showing gastric pit; → showing tunica mucosa; h. body of stomach, showing muscle layers; ↓ showing the outer thin serous, →← showing longitudinal muscle formed wavy wall wrinkling; i. pyloric stomach crosscutting showing the cavity wall structure as a whole; j. pyloric stomach partial enlargement, ← → showing pyloric stomach ring muscle layer thickness; k. rugae gastricae, pyloric stomach branch ruffle local amplification; l. ceca crosscutting, → showing blind sac wall was very thin, ← showing Lumen was full of creases

图2 黑鱾食道、胃及幽门盲囊的组织学观察
a. 食道横切, →示黏膜皱褶; b.食道横切面局部放大, 示食道腔壁结构, ←示黏膜上皮; c. 胃体部, →←示固有层中存在大量胃腺; d. 贲门胃, ↑示胃小凹, →黏膜层内细胞组成; e. 胃体部, 示胃壁的整体结构; f. 贲门胃, 示贲门胃的分层结构以及黏膜上皮组成; g. 胃体部, ↑示胃小凹, →黏膜层; h. 胃体部, 示肌层组成, ↓示外层具极薄浆膜, →←纵肌形成波浪形外壁皱; i. 幽门胃横切, 示腔壁整体结构; j.幽门胃局部放大, ← →示幽门胃环肌层厚, →示内壁腔形成许多分支皱褶; k.胃皱褶, 幽门胃分支皱褶局部放大; l.盲囊横切, →示盲囊壁极薄, ←腔内被大量皱褶所占据

2.2 胃

胃膨大呈“V”形, 一般可将胃分为贲门部、胃体部和幽门部(图1)。胃黏膜形成许多皱襞, 黏膜表层上皮细胞间形成许多细小的胃小凹, 是胃腺的开口。黏膜层的固有层中存在大量胃腺, 每个胃腺通往独立的胃小凹(图2c、2d)。胃腺的横切面为圆形, 管腔由数个腺细胞围成(图2c)。胃肌层厚, 均由平滑肌组成, 内层为环肌, 外层纵肌(图2e、2f)。
贲门部的胃壁可分为4层, 从内到外分别为黏膜层、黏膜下层、肌层以及浆膜层(图2f)。黏膜上皮具复层扁平上皮细胞, 由扁平上皮细胞和长柱状上皮细胞构成。长柱状上皮细胞核均位于细胞的基底部, 核呈椭圆形或者梨形(图2f)。由胃壁黏膜层和黏膜下层向胃腔突起形成6个皱襞, 皱襞上的突起高度不及食道。贲门胃具大量胃小凹, 凹入浅(图2d)。固有层下方的黏膜肌层厚, 肌纤维连接松散, 在近黏膜下层处的排列紧密。黏膜下层由疏松结缔组织形成, 厚度较薄, 仅为200μm, 其间分布着少量脂肪细胞和淋巴细胞, 并有血管、淋巴管和静脉管通过(图2d~2f)。贲门胃的环肌层较发达, 最宽处可达400μm。最外层的浆膜极薄, 不易分辨(图2f)。
胃体部的固有层处存在着大量胃腺, 下方黏膜肌层的肌纤维之间连接松散(图2g)。黏膜层和黏膜下层明显比贲门胃薄, 形成的皱襞多而高度更低, 仅为70μm。胃壁肌肉层极厚, 主要由环肌构成, 厚度约1500μm, 环肌外的纵肌仅250μm (图2e)。纵肌在外壁形成连续的纵纹(图2h)。
幽门胃内壁具丰富的皱褶, 在初级皱褶的基础上出现了次级皱褶, 类似小肠绒毛的分支结构, 主要由单层柱状上皮细胞组成(图2i~2k)。黏膜层的固有层消失, 不具胃腺, 也不具有胃小凹(图2k)。黏膜肌层相对较厚, 约为120μm (图2j)。肌层的环肌明显厚于外层的纵肌。与贲门胃和胃体不同, 幽门胃肌层内不具有血管等分布(图2i)。

2.3 幽门盲囊

黑鱾具有极其发达的盲囊, 呈分枝状(图1), 着生于胃幽门部与肠道连接处, 分枝数量在150条左右。盲囊壁极薄, 盲囊腔几乎被黏膜层凸起的黏膜褶所充满, 褶襞大小不一, 数量极多, 使黏膜褶之间界限不易分辨, 未能计数。黏膜上皮由单层柱状上皮细胞组成, 不具有杯状细胞。固有层较厚, 每个皱襞中央有结缔组织形成的导管。肌层与浆膜极不发达, 为平滑肌构成的环肌(图2l)。

2.4 肠道

黑鱾的肠道长而曲折, 具4个肠曲(图1)。其肠长为体长的1.52倍左右。根据其肠曲位置, 划分为前肠、中肠、后肠3段。3段肠道的组织结构相似, 也可分为黏膜层、黏膜下层、肌层以及浆膜4层(图3a~3c)。黏膜上皮由单层柱状上皮细胞组成, 其间分布有杯状细胞, 其端部被H.E染色而呈“空泡”状(图3d)。肠道内具发达的小肠绒毛凸起(图3d~3f)。绒毛基部的上皮向固有层内陷形成肠腺, 腺体开口于相邻绒毛基部之间。中央乳糜管位于小肠绒毛中轴的固有层内, 极其发达, 相近绒毛膜的乳糜管之间相通(图3d)。肌层由平滑肌组成, 可明显分为内外两层, 内层肌层斜行, 外层肌层环行。最外层为浆膜, 被染成深紫色, 厚度薄(图3d)。
Fig. 3 The intestinal and liver histology of Girella leonine. a. Before bowel cross-cutting, →← showing developed small intestinal villus cavity is separated into several independent parts, and lamina propria is extremely rich; b. After bowel cross-cutting, → showing cavity developed small intestinal villus, lack of branches; c. After bowel cross-cutting, → showing small intestinal villus in the cavity, lack of branches; d. before bowel cross-cutting locally developed, → showing branch of small intestinal villus, ↑ showing a large number of goblet cells; e. Im in cross-cutting locally developed,→ showing branch of small intestinal villus, ↑ showing a large number of goblet cells; f. after bowel cross-cutting locally developed,→ showing branch of small intestinal villus, ↑ showing a large number of goblet cells; g. intestinal villi, → showing the central lacteals was rich, and goblet cells mucous membrane layer was rich; h. hepatic lobule, → showing around the central vein to radiation around the liver cell line; i. lobular partial enlargement, → showing polygonal liver cells and the distribution of small artery

图3 黑鱾肠道、肝脏的组织学观察
a. 前肠纵切, →←示发达小肠绒毛将腔体分隔成几个独立部分, 固有层极其发达; b. 后肠纵切, →示腔内发达的小肠绒毛, 分支少; c. 后肠纵切, →示腔内小肠绒毛, 分支少; d. 前肠横切局部发达, 示肌层构成、→分支小肠绒毛, ↑大量杯状细胞; e. 中肠横切局部发达, 示肌层构成, →分支小肠绒毛, ↑大量杯状细胞; f. 后肠横切局部发达, 示肌层构成, →分支小肠绒毛, ↑大量杯状细胞; g. 小肠绒毛, →示中央乳糜管丰富, 黏膜层杯状细胞丰富; h. 肝小叶, →示围绕中央静脉向四周辐射的肝细胞索; i. 肝小叶局部放大, →示多边形肝细胞以及其中分布的小动脉管

前、中、后肠存在差异。前肠小肠绒毛最为复杂, 黏膜层内固有层极其发达, 与黏膜上皮细胞共同形成了指状绒毛, 合体滋养层和细胞滋养层共同向外形成突起, 称初级绒毛, 胚外中胚层长入初级绒毛内, 改称次级绒毛(图3a)。黏膜上皮富含杯状细胞, 并在固有层处形成了大量肠腺(图3d)。中肠处黏膜上皮杯状细胞有所减少。肠道内具有大量分支小肠绒毛, 乳糜管比前肠发达(图3e)。后肠杯状细胞密集, 绒毛结构简单, 分枝短(图3f、3g)。

2.5 肝脏

黑鱾肝脏内结缔组织少, 由肝小叶构成, 在肝脏小叶内还可见小叶胆管、小叶间静脉以及小叶间动脉等(图3h)。肝细胞体积较大, 呈多边形, 大小约为30μm。核染色深呈圆形。胞质不易染色, 呈透亮状(图3h、3i)。肝细胞排列紧密形成肝细胞索, 以中央静脉为中心, 向周围呈辐射状分布, 并在肝细胞索之间形成了肝血窦。

3 讨论

黑鱾食性杂, 颌齿细密, 齿尖特化成三尖瓣, 有利于切食大型藻类, 在自然海区以海藻和小型无脊椎动物等为食(Yagishita et al, 1999、2003), 其消化道各组成部分担负着相应的功能, 黑鱾的消化道结构根据其杂食性的特征呈现出相应的特点。
食道前端扩大形成口咽腔, 腔壁具有发达的横纹肌, 腔内许多纵行褶皱具有较强的扩张性, 有利于食物的吞咽; 食道壁上的黏液细胞, 具有润滑和保护功能(卢明明 等, 2012)。胃整体呈“V”形, 胃壁肌层厚, 贲门胃和胃体部的黏膜层具有大量胃腺, 胃内壁具丰富的皱褶。据相关研究显示, 消化管壁肌层的厚度决定食糜的机械消化效率(Anderson et al, 1986; 陈宁宁 等, 2011; 张杰, 2015), 因此, 黑鱾膨大的胃能够容纳更多的食物, 并提升了对食物的机械消化能力, 与牙鲆、真鲷和黑石斑鱼等肉食性鱼类相似(喻子牛 等, 1997; 刘云 等, 2001; Vieira et al, 2001; 李海燕 等, 2011), 有利于吞食小型无脊椎动物和贮存海藻食物, 同时胃腺的存在也增强了其消化功能。
肠道系数是鱼类形态测量的重要参数, 黑鱾的平均比肠长值约1.52±0.06, 高于牙鲆、条石鲷和蓝点马鲛等肉食性鱼类(常在0.34~1.23之间)(王迎春 等, 1997; 王健鑫 等, 2006), 而小于植食性和碎屑性鱼类(常为1.66~7.77之间)(林浩然, 1999), 介于肉食性和植食性鱼类之间, 这与黑鱾杂食性的特点相吻合。肠道是黑鱾消化吸收的主要场所, 在体腔内折叠形成4个肠曲, 前肠和中肠小肠绒毛密集, 次级小肠绒毛较一般鱼类复杂, 增大了食物消化吸收面积, 有利于对食物的消化与吸收(赵惠玲 等, 2006; 曹剑香 等, 2010)。多达150条以上的幽门盲囊也起到增加肠道的吸收面积、辅助消化吸收的作用。研究表明, 鱼类的肠黏膜褶数量、高度和杯状细胞数量直接关系到鱼类的消化能力强弱(许宝红 等, 2011; 黄自豪 等, 2015)。黑鱾肠道小肠绒毛反复折叠形成初级绒毛和次级绒毛, 绒毛数量由前往后呈递减趋势, 高度也逐渐降低, 前肠绒毛丰富, 几乎充满整个肠腔, 对腔内食物起到明显延缓作用, 起到对藻类等主要食物的彻底消化功能, 而中肠固有层内的中央乳糜管最为丰富, 黏膜层杯状细胞丰富, 并在固有层处形成了大量肠腺, 乳糜管比前肠发达, 为营养物质主要吸收场所, 与鲻鱼、梭鱼等藻食性鱼类的肠绒毛结构相似(于娜 等, 2011; 梁志强 等, 2011)。因此, 黑鱾消化道结构的特殊性保证了其对海藻的消化吸收, 这是黑鱾长期以来对其食性的适应结果。
肝脏为黑鱾体内最大的消化腺分泌器官, 分为左右两叶, 肝脏小叶间结缔组织少, 小叶构造不明显, 多边形肝细胞排列形成肝细胞索, 内部结缔组织间血管丰富, 与花尾胡椒鲷(Plectorhinchus cinctus)(曹伏君, 2002)和青弹涂鱼(histophorus)(曹伏君 等, 2013)等相似, 呈现一般硬骨鱼类的共性。
综上所述, 黑鱾消化系统特征为: 具细密颌齿; 鳃耙细、数量少; 食道扩张性强, 利于食物的吞咽, 食道壁黏膜褶和肌层发达, 具有黏膜肌; 胃壁肌层厚, 具有丰富的皱褶; 肠道内绒毛丰富, 具腺体。这些结构特点与其杂食性的摄食和消化相适应。

The authors have declared that no competing interests exist.

[1]
曹伏君, 2002. 花尾胡椒鲷肝脏的显微结构[J]. 湛江海洋大学学报, 22(1): 67-69.

CAO FUJUN, 2002. The microstructure of Plectorhynchus cinctus liver[J]. Journal of Zhanjiang Ocean University, 22(1): 67-69 (in Chinese with English abstract).

[2]
曹伏君, 叶宁, 罗杰, 等, 2013. 青弹涂鱼消化系统形态学及组织学研究[J]. 水产科学, 32(2): 63-67.

CAO FUJUN, YE NING, LUO JIE, et al, 2013. Histological observation of digestive system in blue Mudhopper scartelaos vividis[J]. Fisheries Science, 32(2): 63-67 (in Chinese with English abstract).

[3]
曹剑香, 简纪常, 黄洋, 等, 2010. 多鳞(鱼喜)消化系统的形态学和组织学研究[J]. 水产科学, 29(6): 339-343.

CAO JIANXIANG, JIAN JICHANG, HUANG YANG, et al, 2010. Morphology and histology of the digestive system in silver Sillago Sillago sihama (forskál)[J]. Fisheries Science, 29(6): 339-343 (in Chinese with English abstract).

[4]
陈宁宁, 章龙珍, 庄平, 等, 2011. 西伯利亚鲟消化道形态学和组织学的初步研究[J]. 海洋渔业, 33(1): 20-27.

CHEN NINGNING, ZHANG LONGZHEN, ZHUANG PING, et al, 2011. On morphology and histology of the digestive tract in Siberian sturgeon Acipenser baerii[J]. Marine Fisheries, 33(1): 20-27 (in Chinese with English abstract).

[5]
陈舜, 肖云朴, 2008. 南麂列岛海域黑鱾网箱养殖试验初报[J]. 水产科技情报, 35(1): 1-4, 8.

CHEN SHUN, XIAO YUNPU, 2008. Primary report on the netcage culture experiment of Girella melanichthys in Nanji islands[J]. Fisheries Science & Technology Information, 35(1): 1-4, 8 (in Chinese with English abstract).

[6]
杜佳, 徐革锋, 韩英, 等, 2009. 鱼类消化道组织学研究进展[J]. 水产学杂志, 22(4): 56-64.

DU JIA, XU GEFENG, HAN YING, et al, 2009. Research progress in the histology of the digestive tract of fish[J]. Chinese Journal of Fisheries, 22(4): 56-64 (in Chinese with English abstract).

[7]
黄自豪, 易建华, 陈冬明, 等, 2015. 大鳍异鮡消化系统形态学和组织学观察[J]. 淡水渔业, 45(2): 8-14.

HUANG ZIHAO, YI JIANHUA, CHEN DONGMING, et al, 2015. Morphological and histological observations of digestive system in Creteuchiloglanis macropterus[J]. Freshwater Fisheries, 45(2): 8-14 (in Chinese with English abstract).

[8]
李海燕, 竺俊全, 陈飞, 等, 2011. 美洲黑石斑鱼消化道的形态结构[J]. 生物学杂志, 28(4): 31-34, 46.

LI HAIYAN, ZHU JUNQUAN, CHEN FEI, et al, 2011. The morphology of the digestive tract of Centropristis striata[J]. Journal of Biology, 28(4): 31-34, 46 (in Chinese with English abstract).

[9]
梁志强, 李传武, 刘明求, 等, 2011. 湘华鲮消化系统的形态学与组织学研究[J]. 中国水产科学, 18(5): 1051-1060.

LIANG ZHIQIANG, LI CHUANWU, LIU MINGQIU, et al, 2011. Morphological and histological observation of the digestive system in Sinilabeo decorus tungting (Nichols)[J]. Journal of Fishery Sciences of China, 18(5): 1051-1060 (in Chinese with English abstract).

[10]
林浩然, 1999. 鱼类生理学[M]. 广州: 广东高等教育出版社: 185-189.

LIN HAORAN, 1999. Fish physiology [M]. Guangzhou: Guangdong Higher Education Press: 185-189 (in Chinese).

[11]
刘云, 姜国良, 郑家声, 2001. 牙鲆(Paralichthys olivaceus)消化道形态学及组织学研究[J]. 青岛海洋大学学报, 31(4): 548-554.

LIU YUN, JIANG GUOLIANG, ZHENG JIASHENG, 2001. Study of the morphology and histology of the digestive tract of the bastard halibut Paralichthys olivaceus (Temminck & Schlegel)[J]. Journal of Ocean University of Qingdao, 31(4): 548-554 (in Chinese with English abstract).

[12]
卢明明, 李海燕, 竺俊全, 等, 2012. 香鱼消化道及肝脏的形态结构特征[J]. 生物学杂志, 29(5): 25-28.

LU MINGMING, LI HAIYAN, ZHU JUNQUAN, et al, 2012. Morphology of the digestive tract and liver of Plecoglossus altivelis[J]. Journal of Biology, 2012, 29(5): 25-28 (in Chinese with English abstract).

[13]
沈世杰, 1993. 台湾鱼类志[M]. 台湾: 国立台湾大学动物学系: 1-960.

SHEN SHIJIE, 1993. Fishes of Taiwan[M]. Taiwan: Department of zoology, National Taiwan University: 1-960 (in Chinese).

[14]
孙敏, 徐善良, 肖云朴, 等, 2009a. 黑鱾(Girella leonina)淀粉酶酵与蛋白酶的活力研究[J]. 宁波大学学报(理工版), 22(3): 337-342.

SUN MIN, XU SHANLIANG, XIAO YUNPU, et al, 2009a. Study on activities of amylase and protease of Girella leonina[J]. Journal of Ningbo University (NSEE), 22(3): 337-342 (in Chinese with English abstract).

[15]
孙敏, 徐善良, 唐道军, 2009b. 黑鱾血液的生理生化指标研究[J]. 台湾海峡, 28(4): 482-487.

SUN MIN, XU SHANLIANG, TANG DAOJUN, 2009b. Studies on physiological and biochemical blood index of Girella leonina[J]. Journal of Oceanography in Taiwan Strait, 28(4): 482-487 (in Chinese with English abstract).

[16]
唐道军, 徐善良, 马斌, 2013. 温度对黑鱾幼鱼耗氧率和排氨率的影响[J]. 动物学杂志, 48(2): 256-260.

TANG DAOJUN, XU SHANLIANG, MA BIN, 2013. Influence of temperature on oxygen consumption and ammonia excretion of juvenile Girella melanichthys[J]. Chinese Journal of Zoology, 48(2): 256-260 (in Chinese with English abstract).

[17]
王健鑫, 石戈, 李鹏, 等, 2006. 条石鲷消化道的形态学和组织学[J]. 水产学报, 30(5): 618-626.

WANG JIANXIN, SHI GE, LI PENG, et al, 2006. Morphology and histology of digestive tract in Oplegnathus fasciatus[J]. Journal of Fisheries of China, 30(5): 618-626 (in Chinese with English abstract).

[18]
王迎春, 周勤, 段晓英, 1997. 八种海产硬骨鱼类消化系统的比较解剖研究[J]. 海洋与湖沼, (3): 46-51.

WANG YINGCHUN, ZHOU QIN, DUAN XIAOYING, 1997. Comparative studies of the digestive system of eight species of marine fishes[J]. Transactions of Oceanology and Limnology, (3): 46-51 (in Chinese with English abstract).

[19]
肖云朴, 徐善良, 孙敏, 等, 2011. 黑鱾精子发生过程中的超微结构变化[J]. 热带海洋学报, 30(1): 107-112.

XIAO YUNPU, XU SHANLIANG, SUN MIN, et al, 2011. Ultrastructural changes in Girella leonina during spermatogenesis[J]. Journal of Tropical Oceanography, 30(1): 107-112 (in Chinese with English abstract).

[20]
许宝红, 王亚楠, 肖调义, 等, 2011. 4种淡水经济鱼类消化系统的组织学比较[J]. 中国农学通报, 27(32): 47-55.

XU BAOHONG, WANG YA’NAN, XIAO TIAOYI, et al, 2011. The comparative histology studies on digestive system of four species of economic freshwater fishes[J]. Chinese Agricultural Science Bulletin, 27(32): 47-55 (in Chinese with English abstract).

[21]
姚善成, 李凤歧, 1988. 日本产鱾鱼Girella punctata种群和地理变异的研究[J]. 海洋通报, 7(2): 87-94, 75 (in Chinese).

[22]
于娜, 李加儿, 区又君, 2011. 野生鲻鱼和养殖鲻鱼消化系统的组织学观察[J]. 海洋渔业, 33(2): 151-158.

YU NA, LI JIAER, QU YOUJUN, 2011. On histology of digestive system of wild and cultivated grey mullet Mugil cephalus[J]. Marine Fisheries, 33(2): 151-158 (in Chinese with English abstract).

[23]
喻子牛, 孔晓瑜, 孙世春, 1997. 真鲷消化道的组织学和形态学研究[J]. 水产学报, 21(2): 113-119.

YU ZINIU, KONG XIAOYU, SUN SHICHUN, 1997. A study of the histology and morphology of the digestive tract of the Chrysophrys major[J]. Journal of Fisheries of China, 21(2): 113-119 (in Chinese with English abstract).

[24]
张杰, 2015. 工厂化养殖条件下豹纹鳃棘鲈消化生理的初步研究[D]. 上海: 上海海洋大学.

ZHANG JIE, 2015. The primary studies on the digestive physiology of Plectropomus leopardus under industrialized culture[D]. Shanghai: Shanghai Ocean University (in Chinese with English abstract).

[25]
赵惠玲, 范海燕, 赵惠卿, 2006. 鲤鱼消化道组织学及组织化学研究[J]. 太原师范学院学报(自然科学版), 5(2): 125-128.

ZHAO HUILING, FAN HAIYAN, ZHAO HUIQING, 2006. The histology and histochemistry studies of the digestive tract of the carp, Cyprinus carpio[J]. Journal of Taiyuan Normal University (Natural Science Edition), 5(2): 125-128 (in Chinese with English abstract).

[26]
ANDERSON T A, 1986. Histological and cytological structure of the gastrointestinal tract of the luderick, Girella tricuspidata (pisces, kyphosidae), in relation to diet[J]. Journal of Morphology, 190(1): 109-119.

[27]
ITOI S, SAITO T, WASHIO S, et al, 2007. Speciation of two sympatric coastal fish species, Girella punctata and Girella leonina (Perciformes, Kyphosidae)[J]. Organisms Diversity & Evolution, 7(1): 12-19.

[28]
LU H J, LEE H L, 2014. Changes in the fish species composition in the coastal zones of the Kuroshio Current and China Coastal Current during periods of climate change: observations from the set-net fishery (1993-2011)[J]. Fisheries Research, 155: 103-113.

[29]
VIEIRA V L P, BALDISSEROTTO B, 2001. Amino acids and carbohydrates absorption by Na+-dependent transporters in the pyloric ceca of Hoplias malabaricus (Erythrinidae)[J]. Ciência Rural, Santa Maria, 31(5): 793-797.

[30]
YAGISHITA N, NAKABO T, 1999. Revision of the genus Girella (Girellidae) from East Asia[J]. Ichthyological Research, 47(2): 119-135.

[31]
YAGISHITA N, NAKABO T, 2003. Evolutionary trend in feeding habits of Girella (Perciformes: Girellidae)[J]. Ichthyological Research, 50(4): 358-366.

Outlines

/