Journal of Tropical Oceanography >
Experiments of assimilating Doppler radar data in forecast of Typhoon Chanthu
Received date: 2018-05-23
Request revised date: 2018-09-05
Online published: 2019-04-15
Supported by
National Key Research and Development Program of China (2018YFC1506404, 2018YFC1506603, 2017YFC1502102, 2017YFC1502103)
National Natural Science Foundation of China (G41805016, G41805070)
Natural Science Foundation of Jiangsu Province (BK20170940, BK20160954)
Open Project of Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology (KLME201807, KLME201808)
Beijige Funding from Jiangsu Research Institute of Meteorological Science (BJG201604)
Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology (2016r043, 2016r027)
Copyright
Based on the WRF (Weather Research and Forecast) model and WRF-3DVAR (3- Dimensional Variational) assimilation system, we conduct a single time analysis to initialize Typhoon Chanthu and compare the effects of assimilation radar radial velocity (Vr) on Typhoon Chanthu analysis and forecast, with two radar radial wind data. We show that the role of assimilating radar radial wind is mainly reflected in the adjustment of typhoon intensity and circulation structure; and after the assimilation reaches a certain length of time, it has a positive effect on the improvement of forecast. The assimilation test improves the typhoon's initial wind field and the thermal and dynamic structures, intensity, and location of the typhoon circulation center, thereby improving the typhoon structure, path, and intensity predicted for future 18 hours.
Key words: radar radial velocity; data assimilation; WRF-3DVAR; typhoon
QI Peini , SHEN Feifei , KOU Leilei , CHU Zhigang , XU Dongmei . Experiments of assimilating Doppler radar data in forecast of Typhoon Chanthu[J]. Journal of Tropical Oceanography, 2019 , 38(2) : 20 -31 . DOI: 10.11978/2018055
Fig. 1 WRF simulation domain. Dashed circles indicate the Doppler observation ranges of HKRD and YJRD, respectively. Black line and dots indicate the typhoon track from 2200 UTC to 2218 UTC July 21, 2010图1 WRF模拟区域 |
Fig. 2 Flow chart of control experiment (a) and Exp 3DVAR (b)图2 控制试验(CTNL)(a)和3DVAR试验(b)流程图 |
Fig. 3 Analysis increments of horizontal wind vector (the top and middle panels, unit: m•s-1) and wind speed (the bottom panel, unit: m•s-1) at 700 hPa at 1800 UTC July 21, 2010(a, b, c), 2000 UTC July 21, 2010 (d, e, f), 2200 UTC July 21, 2010 (g, h, i), 0000 UTC July 22, 2010 (j, k, l), and before assimilation (a, d, g, j), after assimilation (b, e, h, k), assimilation increment (c, f, j, l) (units: m•s-1). Max reflectivity is shaded in the top and middle panels. The shaded area in the bottom panel is the coverage area of the radar data图3 700hPa处水平风场(第一行和第二行矢量, 单位: m•s-1)和风场增量(第三行矢量, 单位: m•s-1); 组合反射率值(第一行和第二行阴影, 单位: dbz)和雷达资料覆盖区域(第三行阴影) a, b, c: 2010年7月21日18时; d, e, f: 2010年7月21日20时; g, h, i: 2010年7月21日22时; j, k, l: 2010年7月22日00时。a, d, g, j: 同化前; b, e, h, k: 同化后; c, f, j, l: 同化增量 |
Fig. 4 Radar radial velocity in observation (a), background field (b), observation minus background field (c), and analysis field (d) at 1800 UTC July 21, 2010图4 2010年7月21日18时的雷达径向速度 a. 观测场; b. 背景场; c. 观测场-背景场; d. 分析场 |
Fig. 5 Scatters of radar radial velocity in observation and background (a), and in observation and analysis (b)图5 观测场和背景场(a)、观测场和分析场(b)雷达径向速度的散点分布 |
Fig. 6 Root Mean Square Error (RMSE) (a) and Minimum Sea Level Pressure (MSLP) (b) before and after assimilation of each assimilation moment from 1800 UTC July 21, 2010 to 0000 UTC July 22, 2010图6 2010年7月21日18时00分至22日00时00分, 每个同化时刻的同化前后均方根误差(a)和最小海平面气压图(b) |
Fig. 7 The analyzed sea level pressure (contours, units: hPa) and surface wind vector (units: m•s-1) for CTNL (a) and Exp 3DVAR (b) at 0000 UTC July 22, 2010. The black solid line indicates the cross section in |
Fig. 8 Southwest-northeast vertical cross sections of analyzed horizontal wind speed (units: m•s-1) and potential temperature (units: K) for CTNL (a) and Exp 3DVAR (b) at 0000 UTC July 22, 2010图8 2010年7月22日00时CTNL试验(a)和3DVAR试验(b)通过台风中心的水平风速(阴影, 单位: m•s-1)和位温(等值线, 单位: K)的西南—东北垂直截面图 |
Fig. 9 Azimuthal mean tangential wind speed (shading, units: m•s-1) and temperature deviation from horizontal mean (solid contour, units: ℃) at 2000 UTC July 21, 2010 (a), 2200 UTC July 21, 2010 (b), and 0000 UTC July 22, 2010 (c)图9 2010年7月21日20时(a)、2010年7月21日22时(b)和2010年7月22日00时(c)的轴对称切向风(阴影, 单位: m•s-1)和水平温度异常(等值线, 单位: ℃)图 |
Fig. 10 Composite reflectivity (shaded) for observation (a), CTNL (b), and Exp 3DVAR (c) overlapped with winds (vectors) at 0000 UTC July 22, 2010图10 2010年7月22日00时观测场(a)、CTNL试验(b)和3DVAR试验(c)的组合反射率(阴影, 单位: dBZ)和水平风场(箭头, 单位: m•s-1)图 |
Fig. 11 Tracks (a), track error (b), the forecast MSLP (c), and MSW (d) for best track observation, CTNL, and Exp 3DVAR at 0000 UTC July 22, 2010图11 2010年7月22日00时至18时最佳路径观测数据和CTNL试验、3DVAR试验预报的路径图(a)、路径误差图(b)、最小海平面气压(c)、地面最大风速(d)预报 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
/
〈 | 〉 |