Journal of Tropical Oceanography >
Study on the optimum conditions for Polysaccharide production of Chlorella EC04 and its antioxidant activity analysis
Copy editor: LIN Qiang
Received date: 2019-02-17
Request revised date: 2019-04-24
Online published: 2019-12-10
Supported by
Project of Guangxi Natural Science Foundation(2018GXNSFAA294032)
Graduate Education Innovation Project of Guangxi University for Nationalities(Gxun-chxzs 2017117)
Innovation and Entrepreneurship Project of Guangxi University for Nationalities(Gxun-chxzs 2017106080)
Guangxi Science and Technology Base and Talent Project (Guike)(AD18126005)
Copyright
Polysaccharides in Chlorella are involved in many important biological activities and physiological functions. To improve the intracellular polysaccharide production of Chlorella, culture conditions were investigated by single factor experiment and orthogonal experiment. The results showed that the maximum polysaccharide accumulation was obtained at MgSO4·7H2O 112.5 mg·L -1, K2HPO4 60 mg·L -1, NaNO3 1.2 g·L -1, VB1 0.5 mg·L -1, and VB12 0.1 μg·L -1. Under these conditions, the polysaccharide production and biomass were 271.74 mg·g -1 and 48.027×10 6cells·mL -1, which increased by 97.49% and 34.91%, respectively. Free radical scavenging rate of the polysaccharide was also studied. The results showed maximum scavenging rates of DPPH radical and hydroxyl radical were 82.32% and 64.27%, respectively.
Key words: Chlorella sp.; polysaccharide; nutrient; vitamin; radical
YANG Haiyan , LI Jieqiong , LIU Hongquan , HUANG Xiaoyan , XU Zhongtao , LUO Yuankang , XUAN Jincai , LONG Han . Study on the optimum conditions for Polysaccharide production of Chlorella EC04 and its antioxidant activity analysis[J]. Journal of Tropical Oceanography, 2019 , 38(6) : 98 -104 . DOI: 10.11978/2019016
表1 BG-11培养基配方Tab. 1 BG-11 medium formula |
贮存液 | 配制体积/mL | 成分 | 含量/g | 工作液体积/mL |
---|---|---|---|---|
1 | 1000 | NaNO3 | 30 | 50 |
K2HPO4 | 0.80 | |||
Na2CO3 | 0.40 | |||
2 | 100 | Citrate acid | 0.30 | 2 |
柠檬酸铁铵 | 0.30 | |||
EDTA-Na2 | 0.05 | |||
3 | 100 | CaCl2·2H2O | 1.80 | 2 |
4 | 100 | MgSO4·7H2O | 3.75 | 2 |
5 | 1000 | H3BO3 | 2.86 | 1 |
MnCl2-4H2O | 1.81 | |||
CuSO4·5H2O | 0.079 | |||
Na2MnO4·2H2O | 0.391 | |||
Co(NO3)2·6H2O | 0.04947 | |||
ZnSO4·7H2O | 0.222 |
表2 营养盐优化正交实验表Tab. 2 Orthogonal experiments for optimization of nutrients |
水平 | 因素 | ||
---|---|---|---|
MgSO4·7H2O浓度 /(mg·L-1) | K2HPO4浓度 /(mg·L-1) | NaNO3浓度/(g·L-1) | |
1 | 75 | 40 | 0.8 |
2 | 112.5 | 60 | 1.2 |
3 | 150 | 80 | 1.6 |
表3 营养盐对多糖产率和生物量的正交实验结果及直观分析Tab. 3 Results and direct analysis of nutrient conditions on yield of polysaccharide and biomass |
实验组 | MgSO4·7H2O浓度 /(mg·L-1) | K2HPO4浓度 /(mg·L-1) | NaNO3浓度 /(g.L-1) | 空列 | 多糖产率 /(mg·g-1) | 细胞密度 /(×106cells·mL-1) |
---|---|---|---|---|---|---|
1 | 3 | 3 | 1 | 3 | 168.03 | 48.25 |
2 | 1 | 2 | 3 | 2 | 215.15 | 49.34 |
3 | 3 | 1 | 3 | 1 | 175.76 | 41.62 |
4 | 1 | 3 | 2 | 3 | 230.12 | 49.13 |
5 | 2 | 3 | 3 | 2 | 225.01 | 52.95 |
6 | 3 | 2 | 2 | 1 | 228.21 | 50.21 |
7 | 2 | 2 | 1 | 3 | 218.10 | 45.96 |
8 | 2 | 1 | 2 | 1 | 235.52 | 42.41 |
9 | 1 | 1 | 1 | 2 | 177.61 | 35.03 |
K1 | 207.627 | 196.297 | 187.913 | |||
K2 | 226.210 | 220.487 | 231.283 | |||
K3 | 190.667 | 207.720 | 205.307 | |||
极差R1 | 35.543 | 24.190 | 43.370 | |||
k1 | 44.500 | 39.687 | 43.080 | |||
k2 | 47.107 | 48.503 | 47.250 | |||
k3 | 46.693 | 50.110 | 47.970 | |||
极差R2 | 2.607 | 10.423 | 4.890 |
表4 营养盐对EC04的胞内多糖产率的方差分析Tab. 4 Analysis of variance of nutrient salt on intracellular polysaccharide yield of EC04 |
方差来源 | 离差平方和 | 自由度df | 均方 | F值 | P值 |
---|---|---|---|---|---|
MgSO4·7H2O | 1896.310 | 2 | 948.155 | 76.899 | 0.013 |
K2HPO4 | 878.636 | 2 | 439.318 | 35.630 | 0.027 |
NaNO3 | 2858.272 | 2 | 1429.136 | 115.908 | 0.009 |
误差 | 24.660 | 2 | 12.330 |
表5 营养盐对EC04藻细胞密度的方差分析Tab. 5 Analysis of variance of nutrient salt on cell density of EC04 algae |
方差来源 | 离差平方和 | 自由度df | 均方 | F值 | P值 |
---|---|---|---|---|---|
MgSO4·7H2O | 11.776 | 2 | 5.888 | 6.506 | 0.133 |
K2HPO4 | 188.961 | 2 | 94.480 | 104.394 | 0.009 |
NaNO3 | 41.819 | 2 | 20.910 | 23.104 | 0.041 |
误差 | 1.810 | 2 | 0.905 |
1 |
曹吉祥, 李德尚, 王金秋 , 1997. 10种淡水常见浮游藻类营养组成的研究[J]. 中山大学学报(自然科学版), 36(2):22-27.
|
2 |
陈颖, 李文彬, 孙勇如 , 1998. 小球藻生物技术研究应用现状及展望[J]. 生物工程进展, 18(6):12-16.
|
3 |
葛霞, 陈婷婷, 蔡教英 , 等, 2011. 青钱柳多糖抗氧化活性的研究[J]. 中国食品学报, 11(5):59-64.
|
4 |
郝宗娣, 刘洋洋, 续晓光 , 等, 2010. 小球藻(Chlorella)活性成分的研究进展[J]. 食品工业科技, 31(12):369-372.
|
5 |
黄燕娟, 王小芬, 陈向凡 , 2013. 小球藻的营养及药用价值[J]. 现代生物医学进展, 13(32):6396-6398.
|
6 |
来林康, 邓尚贵 , 2014. 鱼腥草多糖提取工艺及抗氧化活性研究[J]. 安徽农业科学, 42(35):12646-12649.
|
7 |
李亚清 , 2004. 海洋微藻多糖的提取分离纯化和结构特征研究[D]. 大连: 大连理工大学.
|
8 |
申明月, 聂少平, 谢明勇 , 等, 2007. 茶叶多糖的糖醛酸含量测定及抗氧化活性研究[J]. 天然产物研究与开发, 19(5):830-833.
|
9 |
史成颖 , 2003. 影响钝顶螺旋藻生长的理化因子的研究[D]. 合肥: 安徽农业大学.
|
10 |
孙惠洁 , 2008. 红毛藻多糖的提取纯化及其性质的研究[D]. 厦门: 集美大学.
|
11 |
谭绩业, 赵连华 , 2004. 营养盐对小球藻生长及胞内多糖含量的影响[J]. 化学与生物工程, 21(1):34-36, 44.
|
12 |
王凌, 孙利芹, 赵小惠 , 2012. 一种微藻多糖的理化性质及抗氧化和保湿活性[J]. 精细化工, 29(1):20-24.
|
13 |
张欣华, 杨海波, 于媛 , 等, 2000. 不同培养条件对海洋微藻多糖含量的影响[J]. 生物学杂志, 17(6):17-18.
|
14 |
赵雪, 董诗竹, 孙丽萍 , 等, 2011. 海带多糖清除氧自由基的活性及机理[J]. 水产学报, 35(4):531-538.
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
/
〈 |
|
〉 |