Journal of Tropical Oceanography >
Applicability and calibration methods of three traditional surface area measurement methods for different coral species — based on 3D scanning technology
Received date: 2019-04-19
Request revised date: 2019-06-19
Online published: 2020-01-09
Supported by
Strategic Priority Research Program of the Chinese Academy of Sciences(XDA13020403)
National Key Research and Development Program of China(2017YFC0506301)
National Natural Science Foundation of China(31370500)
Copyright
The surface area of scleractinian corals is an important reference parameter required for various researchs of coral biology and coral reef ecology. However, due to its complex morphological structure, the accurate measurement of coral surface area remains difficult. The diversity of measurement methods leads to the unreachable direct comparison of important indicators between different coral species. Thus, it is necessary to make a systematic comparison of different surface area measurement methods in different coral species. Regarding coral surface area measured by 3D scanning technique as standard, this study investigated the accuracy of three traditional measurement methods (wax coating, aluminium foil and simple geometry), discussed the applicability of different methods for corals in different morphology, and calibrated the accuracy of traditional measurement methods by simple regression analysis of two scleractinian corals Porites pukoensis (massive) and Pocillopora damicornis (branching). Results showed that the accuracy of simple geometry method was the highest (72.71% and 94.52%), followed by that of wax coating method (68.86% and 83.08%), and the accuracy of aluminium foil method is the lowest (65.27% and 58.07%) for P. pukoensis and P. damicornis, respectively. A strong correlation between 3D scanning method and each of the three traditional measurement methods (r2>0.95) was revealed by simple regression analysis, except for the surface area of P. pukoensis measured by the aluminium foil method (r2=0.762). Overall, to improve the accuracy of traditional coral surface area measurement methods, regression equations constructed by simple regression analysis can be used for calibration.
LIANG Yuxian , YU Xiaolei , GUO Yajuan , HUANG Hui , ZHOU Weihua , YUAN Xiangcheng . Applicability and calibration methods of three traditional surface area measurement methods for different coral species — based on 3D scanning technology[J]. Journal of Tropical Oceanography, 2020 , 39(1) : 85 -93 . DOI: 10.11978/2019039
图2 不同方法测量珊瑚表面积鹿角杯形珊瑚(a, c, e); 普哥滨珊瑚(b, d, f); 石蜡包埋法(a, b); 3D扫描方法(c, d); 简单几何近似法(e, f) Fig. 2 Techniques for coral surface area quantification applied in this study: P.. damicornis specimen (a, c, e); P. pukoensis specimen (b, d, f). The methods are wax coating (a, b); 3D scanning technique (c, d); and simple geometry (e, f) |
表1 用于简单几何近似法计算的几何体的表面积公式Tab. 1 Area equations for geometric shapes and forms used in Simple Geometry approximation calculations |
几何体 | 表面积公式 |
---|---|
圆台 | S=π(r²+Rl+rl) |
圆柱 | S=πr(r+2h) |
三角形 | S=ah/2 |
半球 | S=2πr² |
梯形 | S=(a1+a2)h/2 |
注: R为圆台下底的半径; r为圆台上底、圆柱、半球的半径; l=$\sqrt{{{(R-r)}^{2}}+{{h}^{2}}}$; a为三角形的底边; a1为梯形上底边; a2为梯形下底边。 |
表2 3种传统方法测量珊瑚表面积的准确度(单位: %)Tab. 2 Accuracy of three traditional techniques applied in coral surface area measurement (units: %) |
方法 | 鹿角杯形珊瑚 | 普哥滨珊瑚 |
---|---|---|
石蜡包埋法 | 83.08±11.28 | 68.86±8.19 |
锡箔纸包裹法 | 58.07±6.70 | 65.27±8.32 |
简单几何近似法 | 94.52±7.31 | 72.71±12.30 |
注: n=5。 |
表3 不同方法测定的鹿角杯形珊瑚(A1—A5)和普哥滨珊瑚(B1—B5)表面积Tab. 3 Surface area values for P. damicornis (A1-A5) and P. pukoensis (B1-B5) obtained by different techniques |
样品编号 | 3D扫描方法 | 石蜡包埋法 | 锡箔纸包裹法 | 简单几何近似法 | ||||
---|---|---|---|---|---|---|---|---|
表面积/cm2 | SD | 表面积/cm2 | SD | 表面积/cm2 | SD | 表面积/cm2 | SD | |
A1 | 37.59 | 0.84 | 38.68 | 6.43 | 55.42 | 2.73 | 37.07 | 0.49 |
A2 | 14.13 | 0.49 | 19.06 | 1.45 | 28.30 | 3.81 | 14.22 | 0.70 |
A3 | 11.46 | 0.08 | 14.83 | 2.57 | 20.74 | 3.96 | 11.26 | 0.78 |
A4 | 31.20 | 0.06 | 31.70 | 2.84 | 46.57 | 7.82 | 30.66 | 0.47 |
A5 | 8.95 | 0.09 | 13.49 | 1.28 | 18.28 | 3.54 | 8.65 | 0.37 |
B1 | 20.82 | 0.15 | 27.92 | 2.85 | 34.76 | 2.99 | 23.90 | 1.22 |
B2 | 19.94 | 0.09 | 36.46 | 3.56 | 37.09 | 3.67 | 14.69 | 0.74 |
B3 | 22.66 | 0.34 | 30.44 | 0.95 | 32.22 | 1.05 | 19.57 | 1.12 |
B4 | 14.46 | 0.29 | 20.66 | 1.18 | 19.45 | 1.83 | 10.28 | 0.25 |
B5 | 15.70 | 0.24 | 22.25 | 1.98 | 11.90 | 0.82 | 11.95 | 0.26 |
图3 石蜡包埋法、锡箔纸包裹法和简单几何近似法与3D扫描方法测量珊瑚表面积的线性拟合鹿角杯形珊瑚(a); 普哥滨珊瑚(b); 3D扫描法测量的表面积(SST); 石蜡包埋法测量的表面积(SWC); 锡箔纸包裹法测量的表面积(SAF); 简单几何近似法测量的表面积(SSG) Fig. 3 Linear regressions among wax coating, aluminium foil, simple geometry and 3D scanning technique for determining surface area. SST denotes surface area of 3D scanning technique; SWC denotes surface area of wax coating; SAF denotes surface area of aluminium foil; and SSG denotes surface area of simple geometry. |
表4 4种珊瑚表面积测定方法的测量时间Tab. 4 Measuring times of four techniques applied in coral area determination |
方法 | 每个样本的测量时间 | |
---|---|---|
鹿角杯形珊瑚/min | 普哥滨珊瑚/min | |
3D扫描方法 | 10~50 | 15~60 |
石蜡包埋法 | 15±2 | 15±2 |
锡箔纸包裹法 | 7~20 | 3~5 |
简单几何近似法 | 6~30 | 3~10 |
注: n=5。 |
表5 珊瑚表面积测量方法的文献总结(Holmes, 2008)Tab. 5 Published methods for estimating surface area of corals (Holmes, 2008) |
方法 | 原位测量 | 珊瑚整体水平测量 | 珊瑚礁群落水平测量 | 准确性 | 参考文献 |
---|---|---|---|---|---|
投影面积 | 适用 | 适用 | 适用 | 低 | Odum et al, 1955 |
锡箔纸包裹法 | 不适用 | 受限制 | 不适用 | 较高 | Marsh et al, 1970 |
平面比例估算方法 | 适用 | 适用 | 适用 | 低 | Dahl, 1973; Chancerelle, 2000, Courtney et al, 2007 |
乳胶包埋法 | 不适用 | 受限制 | 不适用 | 较高 | Meyer et al, 1985 |
扫描法 | 不适用 | 受限制 | 不适用 | 高 | Kaandorp et al, 2001 |
染料包埋法 | 不适用 | 适用 | 不适用 | 较高 | Hoegh-Guldberg, 1988 |
石蜡包埋法 | 不适用 | 受限制 | 不适用 | 较高 | Stimson et al, 1991 |
摄影测量技术 | 适用 | 受限制 | 不适用 | 受时间限制 | Bythell et al, 2001 |
3D重构技术 | 适用 | 受限制 | 不适用 | 受时间限制 | Cocito et al, 2003 |
[1] |
郭亚娟, 周伟华, 袁翔城 , 等, 2018. 两种造礁石珊瑚对海水酸化和溶解有机碳加富的响应[J]. 热带海洋学报, 37(1):57-63.
|
[2] |
林静, 汤汶, 万韬阮 , 2013. 基于结构光的3D激光扫描仪系统研究[J]. 微处理机, 34(2):78-80.
|
[3] |
马敏, 王伯波, 闫超奇 , 等, 2018. 基于旋转电极的电容层析成像技术图像融合算法[J]. 计量学报, 39(1):43-46.
|
[4] |
周洁 , 2012. 海洋酸化对海南三亚珊瑚共生虫黄藻密度和光合效率影响的实验研究[D]. 广州: 中国科学院南海海洋研究所: 1-82.
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
/
〈 | 〉 |