Journal of Tropical Oceanography >
Codes coupling method for simulating hydraulic fracturing within the gas hydrate stability zone
Received date: 2019-05-13
Request revised date: 2019-05-18
Online published: 2020-01-09
Supported by
National Natural Science Foundation of China(41176052)
National Natural Science Foundation of China(41576035)
National Natural Science Foundation of China(41276050)
Copyright
Hydrates-filled discrete fractures have been observed within the gas chimney structure in marine gas hydrate stability zone worldwide. It indicates that naturally hydraulic fracturing process and stimulated fluid flow have occurred in the gas hydrate stability zone. Gas production can benefit from artificially hydraulic fracturing within the methane hydrate reservoir. There can be a change in fracture aperture during the gas production from the methane hydrate reservoir. In return, the evolution of the fracture network has effects on the gas production process. While quite a few researchers have developed codes for modelling the coupled process between hydrate dissociation and elastoplastic deformation, currently there is no numerical tool to investigate the coupled process between fracture network evolution and gas production. Here, we couple TOUGH+Hydrate codes with the already coupled IC-FERST and Solidity codes in order to simulate the hydraulic fracturing process within the gas hydrate stability zone. We run an example in which the pressure around a borehole will be increased to create hydraulic fracturing within the gas hydrate stability zone. The coupling method, with additional improvements in the future, can be used to simulate the coupled process between fracture network evolution and gas production.
Key words: gas hydrate; hydraulic fracturing; numerical tool; coupling method
LIU Jinlong , WANG Shuhong , Asiri Obeysekara , XIANG Jiansheng , Pablo Salinas , Christopher Pain , Jonny Rutqvist , YAN Wen . Codes coupling method for simulating hydraulic fracturing within the gas hydrate stability zone[J]. Journal of Tropical Oceanography, 2020 , 39(1) : 94 -105 . DOI: 10.11978/2019048
图1 Ulleung盆地(UBGH1)海洋沉积物样品中被水合物充填的离散裂隙(Park et al, 2008)Fig. 1 Hydrates-filled fractures in marine sediments in the Ulleung Basin (UBGH1), East Sea (Park et al, 2008) |
图2 I型裂隙前缘的各变形区a. 应力-位移关系; b. 张性裂隙前缘的弹性、塑性和离散裂隙区(Yang et al, 2017) Fig. 2 Different zones in a single mode I fracture tip. (a) the relationship between stress and displacement; (b) the elastic, plastic and discrete fracture zone in a single mode I tensile fracture tip (from Yang et al, 2017) |
表1 模型物理参数Tab. 1 Physical model parameters |
参数名称 | 数值 | 参考文献 |
---|---|---|
沉积物颗粒的密度/($\text{kg}\cdot {{\text{m}}^{-\text{3}}}$) | 2650 | Garg et al, 2008 |
甲烷在孔隙水中的扩散系数/(${{\text{m}}^{\text{2}}}\cdot {{\text{s}}^{-\text{1}}}$) | $\text{1}{{\text{0}}^{-\text{9}}}$ | Garg et al, 2008 |
盐离子在孔隙水中的扩散系数/(${{\text{m}}^{\text{2}}}\cdot {{\text{s}}^{-\text{1}}}$) | $\text{1}{{\text{0}}^{-\text{9}}}$ | Garg et al, 2008 |
沉积物颗粒的半径/m | $\text{1}\text{.48}\times \text{1}{{\text{0}}^{-\text{6}}}$ | Gràcia et al, 2005 |
沉积物压缩系数/$\text{P}{{\text{a}}^{-1}}$ | ${{10}^{-8}}$ | Rutqvist et al, 2009 |
热膨胀系数/${{\text{K}}^{-1}}$ | 0.0 |
表2 热导率、毛细管压力和相对渗透率方程及参数Tab. 2 Model equations and parameterizations for thermal conductivity, capillary pressure and relative permeability |
方程或参数名称 | 表达式或数值 | 参考文献 |
---|---|---|
沉积物热导率模型 | $\begin{align} & {{K}_{\Theta }}=\left( 1-{{\phi }_{0}} \right){{K}_{\text{dry}}}+ \\ & {{\phi }_{0}}\left( {{S}_{\text{a}}}{{K}_{\text{a}}}+{{S}_{\text{h}}}{{K}_{\text{h}}}+{{S}_{\text{g}}}{{K}_{\text{g}}} \right) \\ \end{align}$ | Liu et al, 2007; Smith et al, 2014; Gupta et al, 2015 |
沉积物颗粒的热导率${{K}_{\text{dry}}}$/($\text{W}\cdot {{\text{m}}^{-\text{1}}}\cdot {{\text{K}}^{-\text{1}}}$) | 3.61 | |
因水合物存在而引起的渗透率降低模型 | ${{k}_{\text{rS}}}={{\left[ \frac{{{\phi }_{0}}\left( 1-{{S}_{\text{h}}} \right)-{{\phi }_{\text{c}}}}{{{\phi }_{0}}-{{\phi }_{\text{c}}}} \right]}^{{{n}_{\text{H}}}}}$ | Moridis et al, 2008; Stone, 1970 |
基质沉积物中的临界孔隙度${{\phi }_{\text{c}}}$ | 0.01 | |
裂隙中的临界孔隙度${{\phi }_{\text{c}}}$ | 0.0 | |
基质沉积物中的渗透率降低指数${{n}_{\text{H}}}$ | 11.1 | Kossel et al, 2018 |
裂隙中的渗透率降低指数${{n}_{\text{H}}}$ | 3.0 | |
存在水合物时的毛细管压力模型 | ${{P}_{\text{cap}}}=\sqrt{\frac{1-{{S}_{\text{h}}}}{{{k}_{\text{rS}}}}}{{P}_{\text{cap,00}}}$ | Moridis et al, 2008 |
不存在水合物时的毛细管压力模型 (Van Genuchten模型) | ${{P}_{\text{cap,00}}}=-{{P}_{0}}{{\left[ {{\left( {{S}^{*}} \right)}^{-{1}/{\lambda }\;}}-1 \right]}^{1-\lambda }}$ ${{S}^{*}}={\left( {{S}_{\text{a}}}-{{S}_{\text{irA}}} \right)}/{\left( {{S}_{\text{mxA}}}-{{S}_{\text{irA}}} \right)}\;$ | Moridis et al, 2008; Van Genuchten, 1980 |
Van Genuchten指数$\lambda$ | 0.45 | Rutqvist et al, 2009 |
基质沉积物中的毛细管入口压力${{P}_{0}}$/Pa | $2.3\times {{10}^{5}}$ | Liu et al, 2011 |
裂隙中的${{P}_{0}}$/Pa | 144 | Daigle et al, 2011; Pruess et al, 1990 |
基质沉积物中的残余孔隙水饱和度${{S}_{\text{irA}}}$ | 0.19 | |
裂隙中的${{S}_{\text{irA}}}$ | 0.09 | |
最大孔隙水饱和度${{S}_{\text{mxA}}}$ | 1.0 | Rutqvist et al , 2009 |
基质沉积物中的最大毛细管压力${{P}_{\text{cap,mx}}}$/Pa | $6.5\times {{10}^{7}}$ | Liu et al, 2011 |
裂隙中的${{P}_{\text{cap,mx}}}$/Pa | $5.0\times {{10}^{7}}$ | |
相对渗透率模型 (Modified Stone’s模型) | ${{k}_{\text{rA}}}={{\left[ {\left( {{S}_{\text{a}}}-{{S}_{\text{irA}}} \right)}/{\left( 1-{{S}_{\text{irA}}} \right)}\; \right]}^{n}}$ ${{k}_{\text{rG}}}={{\left[ {\left( {{S}_{\text{g}}}-{{S}_{\text{irG}}} \right)}/{\left( 1-{{S}_{\text{irA}}} \right)}\; \right]}^{n}}$ | Moridis et al, 2008 |
基质沉积物中的残余孔隙水饱和度${{S}_{\text{irA}}}$ | 0.20 | Rutqvist et al, 2009 |
裂隙中的${{S}_{\text{irA}}}$ | 0.10 | |
基质沉积物中的残余气体饱和度${{S}_{\text{irG}}}$ | 0.02 | Liu et al, 2007; Rutqvist et al, 2009 |
裂隙中的${{S}_{\text{irG}}}$ | 0.01 | |
相对渗透率指数n | 3.57 | Rutqvist et al, 2009 |
表3 裂隙计算中使用的沉积物力学参数Tab. 3 Sediment properties or parameters used in Solidity codes |
参数 | 数值 |
---|---|
黏聚力/MPa | 1.06 |
内摩擦系数 | 0.76 |
联接摩擦系数 | 0.76 |
拉伸强度/MPa | 1.0 |
模型I的能量释放率/($\text{J}\cdot {{\text{m}}^{-\text{2}}}$) | 1.0 |
模型II的能量释放率/($\text{J}\cdot {{\text{m}}^{-\text{2}}}$) | 10.0 |
质量系数 | 300 |
第一拉梅常数λ | $2.31\times {{10}^{9}}$ |
第二拉梅常数μ | $1.538\times {{10}^{9}}$ |
弹性惩罚因子 | $4.0\times {{10}^{9}}$ |
接触惩罚因子 | $4.0\times {{10}^{8}}$ |
界面摩擦系数 | 0.76 |
最大拉伸强度/MPa | 1000 |
实验尺度的联接粗糙度系数 | 15 |
实验尺度的联接压缩强度/MPa | 120 |
联接样本长度/m | 0.2 |
[1] |
卢静生, 李栋梁, 何勇 , 等, 2017. 天然气水合物开采过程中出砂研究现状[J]. 新能源进展, 5(5):394-402.
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
/
〈 | 〉 |