[1] |
焦念志, 2021. 研发海洋“负排放”技术支撑国家“碳中和”需求[J]. 中国科学院院刊, 36(2): 179-187.
|
|
JIAO NIANZHI, 2021. Developing ocean negative carbon emission technology to support national carbon neutralization[J]. Bulletin of Chinese Academy of Sciences, 36(2): 179-187 (in Chinese with English abstract).
|
[2] |
杨宇峰, 罗洪添, 王庆, 等, 2021. 大型海藻规模栽培是增加海洋碳汇和解决近海环境问题的有效途径[J]. 中国科学院院刊, 36(3): 259-269.
|
|
YANG YUFENG, LUO HONGTIAN, WANG QING, et al, 2021. Large-scale cultivation of seaweed is effective approach to increase marine carbon sequestration and solve coastal environmental problems[J]. Bulletin of Chinese Academy of Sciences, 36(3): 259-269 (in Chinese with English abstract).
|
[3] |
张永雨, 张继红, 梁彦韬, 等, 2017. 中国近海养殖环境碳汇形成过程与机制[J]. 中国科学: 地球科学, 47(12): 1414-1424.
|
|
ZHANG YONGYU, ZHANG JIHONG, LIANG YANTAO, et al, 2017. Carbon sequestration processes and mechanisms in coastal mariculture environments in China[J]. Science China Earth Sciences, 47(12): 1414-1424.
|
[4] |
ALAGAWANY M, ABD EL-HACK M E, FARAG M R, et al, 2020. The applications of Origanum vulgare and its derivatives in human, ruminant and fish nutrition-a review[J]. Annals of Animal Science, 20(2): 389-407.
|
[5] |
ALLEWAY H K, 2023. Climate benefits of seaweed farming[J]. Nature Sustainability, 6(4): 356-357.
|
[6] |
BALAJI-PRASATH B, WANG YING, SU YUPING, et al, 2022. Methods to control harmful algal blooms: a review[J]. Environmental Chemistry Letters, 20(5): 3133-3152.
|
[7] |
BAR-ON Y M, MILO R, 2019. The biomass composition of the oceans: a blueprint of our blue planet[J]. Cell, 179(7): 1451-1454.
|
[8] |
BEWS E, BOOHER L, POLIZZI T, et al, 2021. Effects of salinity and nutrients on metabolism and growth of Ulva lactuca: implications for bioremediation of coastal watersheds[J]. Marine Pollution Bulletin, 166: 112199.
|
[9] |
BOETTCHER M, BRENT K, BUCK H J, et al, 2021. Navigating potential hype and opportunity in governing marine carbon removal[J]. Frontiers in Climate, 3: 664456.
|
[10] |
CHAI ZHAOYANG, HE ZHILI, DENG YUNYAN, et al, 2018. Cultivation of seaweed Gracilaria lemaneiformis enhanced biodiversity in a eukaryotic plankton community as revealed via metagenomic analyses[J]. Molecular Ecology, 27(4): 1081-1093.
|
[11] |
CHAMKALANI A, ZENDEHBOUDI S, REZAEI N, et al, 2020. A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects[J]. Renewable and Sustainable Energy Reviews, 134: 110143.
|
[12] |
CHUNG I K, BEARDALL J, MEHTA S, et al, 2011. Using marine macroalgae for carbon sequestration: a critical appraisal[J]. Journal of Applied Phycology, 23(5): 877-886.
|
[13] |
CORRIGAN S, BROWN A R, ASHTON I G C, et al, 2022. Quantifying habitat provisioning at macroalgal cultivation sites[J]. Reviews in Aquaculture, 14(3): 1671-1694.
|
[14] |
COTAS J, GOMES L, PACHECO D, et al, 2023. Ecosystem services provided by seaweeds[J]. Hydrobiology, 2(1): 75-96.
|
[15] |
DAI MINHAN, ZHAO YANGYANG, CHAI FEI, et al, 2023. Persistent eutrophication and hypoxia in the coastal ocean[J]. Cambridge Prisms: Coastal Futures, 1: e19.
|
[16] |
DE LA MONEDA A, CARRO M D, WEISBJERG M R, et al, 2019. Variability and potential of seaweeds as ingredients of ruminant diets: an in vitro study[J]. Animals, 9(10): 851.
|
[17] |
DEANGELO J, SAENZ B T, ARZENO-SOLTERO I B, et al, 2022. Economic and biophysical limits to seaweed farming for climate change mitigation[J]. Nature Plants, 9(1): 1-13.
|
[18] |
DEVRIES T, 2022. The ocean carbon cycle[J]. Annual Review of Environment and Resources, 47: 317-341.
|
[19] |
DILLON J A, STACKHOUSE-LAWSON K R, THOMA G J, et al, 2021. Current state of enteric methane and the carbon footprint of beef and dairy cattle in the United States[J]. Animal Frontiers, 11(4): 57-68.
doi: 10.1093/af/vfab043
pmid: 34513270
|
[20] |
DOLLIVER J, O’CONNOR N, 2022. Whole system analysis is required to determine the fate of macroalgal carbon: a systematic review[J]. Journal of Phycology, 58(3): 364-376.
doi: 10.1111/jpy.13251
pmid: 35397178
|
[21] |
DUARTE C M, WU JIAPING, XIAO XI, et al, 2017. Can seaweed farming play a role in climate change mitigation and adaptation?[J]. Frontiers in Marine Science, 4: 100.
|
[22] |
EGGERTSEN L, FERREIRA C E L, FONTOURA L, et al, 2017. Seaweed beds support more juvenile reef fish than seagrass beds in a south-western Atlantic tropical seascape[J]. Estuarine, Coastal and Shelf Science, 196: 97-108.
|
[23] |
FAN WEI, ZHANG ZHUJUN, YAO ZHONGZHI, et al, 2020. A sea trial of enhancing carbon removal from Chinese coastal waters by stimulating seaweed cultivation through artificial upwelling[J]. Applied Ocean Research, 101: 102260.
|
[24] |
|
[25] |
FRIEDLINGSTEIN P, O’SULLIVAN M, JONES M W, et al, 2022. Global carbon budget 2022[J]. Earth System Science Data, 14(11): 4811-4900.
|
[26] |
FROEHLICH H E, AFFLERBACH J C, FRAZIER M, et al, 2019. Blue growth potential to mitigate climate change through seaweed offsetting[J]. Current Biology, 29(18): 3087-3093. e3.
doi: S0960-9822(19)30886-3
pmid: 31474532
|
[27] |
GAO GUANG, BURGESS J G, WU MIN, et al, 2020. Using macroalgae as biofuel: current opportunities and challenges[J]. Botanica Marina, 63(4): 355-370.
|
[28] |
GAO KUNSHAN, BEARDALL J, 2022. Using macroalgae to address UN Sustainable Development goals through CO2 remediation and improvement of the aquaculture environment[J]. Applied Phycology, 3(1): 360-367.
|
[29] |
GARCíA-POZA S, PACHECO D, COTAS J, et al, 2022. Marine macroalgae as a feasible and complete resource to address and promote Sustainable Development Goals (SDGs)[J]. Integrated Environmental Assessment and Management, 18(5): 1148-1161.
|
[30] |
GLASSON C R K, KINLEY R D, DE NYS R, et al, 2022. Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants[J]. Algal Research, 64: 102673.
|
[31] |
GLOBAL CARBON PROJECT, 2022. Supplemental data of Global Carbon Budget2022 (Version 1. 0)[DS/OL]. Global Carbon Project [2023-12-03]. https://doi.org/10.18160/gcp-2022
|
[32] |
GRUBER N, BAKKER D C E, DEVRIES T, et al, 2023. Trends and variability in the ocean carbon sink[J]. Nature Reviews Earth & Environment, 4(2): 119-134.
|
[33] |
GULEV S K, THORNE P W, AHN J, et al, 2021. Changing state of the climate system[M]// MASSON-DELMOTTEV, ZHAIPANMAO, PIRANIA, et al. Climate Change 2021:The Physical Science Basis. Cambridge: Cambridge University Press: 287-422.
|
[34] |
HANDAYANI T, ZULPIKAR F, KUSNADI A, 2022. The roles of macroalgae in climate change mitigation: opportunities and challenges for marine-based carbon donor[J]. IOP Conference Series: Earth and Environmental Science, 1119: 012014.
|
[35] |
HILL R, BELLGROVE A, MACREADIE P I, et al, 2015. Can macroalgae contribute to blue carbon? An a ustralian perspective[J]. Limnology and Oceanography, 60(5): 1689-1706.
|
[36] |
HOEGH-GULDBERG O, LOVELOCK C, CALDEIRA K, et al, 2019. The ocean as a solution to climate change: five opportunities for action[M]. Washington: World Resources Institute.
|
[37] |
JIANG ZHIBING, LIU JINGJING, LI SHANGLU, et al, 2020. Kelp cultivation effectively improves water quality and regulates phytoplankton community in a turbid, highly eutrophic bay[J]. Science of the Total Environment, 707: 135561.
|
[38] |
JIAO NIANZHI, HERNDL G J, HANSELL D A, et al, 2010. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 8(8): 593-599.
doi: 10.1038/nrmicro2386
pmid: 20601964
|
[39] |
KINLEY R D, MARTINEZ-FERNANDEZ G, MATTHEWS M K, et al, 2020. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed[J]. Journal of Cleaner Production, 259: 120836.
|
[40] |
KRAUSE-JENSEN D, DUARTE C M, 2016. Substantial role of macroalgae in marine carbon sequestration[J]. Nature Geoscience, 9(10): 737-742.
doi: 10.1038/NGEO2790
|
[41] |
KRAUSE-JENSEN D, LAVERY P, SERRANO O, et al, 2018. Sequestration of macroalgal carbon: the elephant in the Blue Carbon room[J]. Biology Letters, 14(6): 20180236.
|
[42] |
KROEKER K J, BELL L E, DONHAM E M, et al, 2020. Ecological change in dynamic environments: accounting for temporal environmental variability in studies of ocean change biology[J]. Global Change Biology, 26(1): 54-67.
doi: 10.1111/gcb.14868
pmid: 31743515
|
[43] |
KWAN V, FONG J, NG C S L, et al, 2022. Temporal and spatial dynamics of tropical macroalgal contributions to blue carbon[J]. Science of The Total Environment, 828: 154369.
|
[44] |
LAI S, LOKE L H L, BOUMA T J, et al, 2018. Biodiversity surveys and stable isotope analyses reveal key differences in intertidal assemblages between tropical seawalls and rocky shores[J]. Marine Ecology Progress Series, 587: 41-53.
|
[45] |
LANDRIGAN P J, STEGEMAN J J, FLEMING L E, et al, 2020. Human health and ocean pollution[J]. Annals of Global Health, 86(1): 151.
doi: 10.5334/aogh.2831
pmid: 33354517
|
[46] |
LI HONGMEI, FENG XIUTING, XIONG TIANQI, et al, 2023a. Green tides significantly alter the molecular composition and properties of coastal DOC and perform dissolved carbon sequestration[J]. Environmental Science & Technology, 57(1): 770-779.
|
[47] |
LI HONGMEI, ZHANG ZENGHU, XIONG TIANQI, et al, 2022. Carbon sequestration in the form of recalcitrant dissolved organic carbon in a seaweed (kelp) farming environment[J]. Environmental Science & Technology, 56(12): 9112-9122.
|
[48] |
LI JIASUI, WEINBERGER F, DE NYS R, et al, 2023b. A pathway to improve seaweed aquaculture through microbiota manipulation[J]. Trends in Biotechnology, 41(4): 545-556.
|
[49] |
LOVELOCK C E, DUARTE C M, 2019. Dimensions of blue carbon and emerging perspectives[J]. Biology Letters, 15(3): 20180781.
|
[50] |
LUO HONGTIAN, XIE SONGGUANG, YANG YUFENG, 2022. Potential removal capacity and secondary pollution risk evaluation of heavy metals in Gracilaria lemaneiformis from a typical seaweed farming base[J]. Algal Research, 65: 102749.
|
[51] |
MAC MONAGAIL M, CORNISH L, MORRISON L, et al, 2017. Sustainable harvesting of wild seaweed resources[J]. European Journal of Phycology, 52(4): 371-390.
|
[52] |
MACREADIE P I, ANTON A, RAVEN J A, et al, 2019. The future of Blue Carbon science[J]. Nature Communications, 10(1): 3998.
doi: 10.1038/s41467-019-11693-w
pmid: 31488846
|
[53] |
MACREADIE P I, COSTA M D, ATWOOD T B, et al, 2021. Blue carbon as a natural climate solution[J]. Nature Reviews Earth & Environment, 2(12): 826-839.
|
[54] |
MANTRI V A, KAMBEY C S B, COTTIER-COOK E J, et al, 2023. Overview of global Gracilaria production, the role of biosecurity policies and regulations in the sustainable development of this industry[J]. Reviews in Aquaculture, 15(2): 801-819.
|
[55] |
MILDENBERGER J, STANGELAND J, REBOURS C, 2022. Antioxidative activities, phenolic compounds and marine food allergens in the macroalgae Saccharina latissima produced in integrated multi-trophic aquaculture systems[J]. Aquaculture, 546: 737386.
|
[56] |
MIN B R, PARKER D, BRAUER D, et al, 2021. The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: challenges and opportunities[J]. Animal Nutrition, 7(4): 1371-1387.
doi: 10.1016/j.aninu.2021.10.003
pmid: 34786510
|
[57] |
NAIEL M A E, ISMAEL N E M, ABD EL-HAMEED S A A, et al, 2020. The antioxidative and immunity roles of chitosan nanoparticle and vitamin C-supplemented diets against imidacloprid toxicity on Oreochromis niloticus[J]. Aquaculture, 523: 735219.
|
[58] |
NAIEL M A E, ALAGAWANY M, PATRA A K, et al, 2021. Beneficial impacts and health benefits of macroalgae phenolic molecules on fish production[J]. Aquaculture, 534: 736186.
|
[59] |
NASEM, 2021. A research strategy for ocean-based carbon dioxide removal and sequestration[R/OL]. Washington, DC: The National Academies Press. [2023-12-03]. https://doi.org/10.17226/26278.
|
[60] |
NGUYEN P Q, HUANG XIAONING, COLLINS D S, et al, 2023. Harnessing synthetic biology to enhance ocean health[J]. Trends in Biotechnology, 41(7): 860-874.
doi: 10.1016/j.tibtech.2022.12.015
pmid: 36669947
|
[61] |
OULD E, CALDWELL G S, 2022. The potential of seaweed for carbon capture[J/OL]. CABI Reviews, 2022(2022): 1-9 [2023-12-03]. https://www.cabidigitallibrary.org/doi/epdf/10.1079/cabireviews202217009
|
[62] |
OYINLOLA M A, REYGONDEAU G, WABNITZ C C C, et al, 2020. Projecting global mariculture diversity under climate change[J]. Global Change Biology, 26(4): 2134-2148.
|
[63] |
PANGESTUTI M, SUHARTINI S, HIDAYAT N, 2021. Life cycle assessment of bioenergy production from macroalgae: a review[J]. IOP Conference Series: Earth and Environmental Science, 924: 012070.
|
[64] |
PATRA A K, AMASHEH S, ASCHENBACH J R, 2019. Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds-a comprehensive review[J]. Critical Reviews in Food Science and Nutrition, 59(20): 3237-3266.
|
[65] |
RAVAGLIOLI C, BULLERI F, RÜHL S, et al, 2019. Ocean acidification and hypoxia alter organic carbon fluxes in marine soft sediments[J]. Global Change Biology, 25(12): 4165-4178.
doi: 10.1111/gcb.14806
pmid: 31535452
|
[66] |
RAVEN J, 2018. Blue carbon: past, present and future, with emphasis on macroalgae[J]. Biology Letters, 14(10): 20180336.
|
[67] |
REN C G, LIU Z Y, WANG X L, et al, 2022. The seaweed holobiont: from microecology to biotechnological applications[J]. Microbial Biotechnology, 15(3): 738-754.
|
[68] |
RIDOUTT B, LEHNERT S A, DENMAN S, et al, 2022. Potential GHG emission benefits of Asparagopsis taxiformis feed supplement in Australian beef cattle feedlots[J]. Journal of Cleaner Production, 337: 130499.
|
[69] |
ROQUE B M, VENEGAS M, KINLEY R D, et al, 2021. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers[J]. PLoS One, 16(3): e0247820.
|
[70] |
ROSE D J, HEMERY L G, 2023. Methods for measuring carbon dioxide uptake and permanence: review and implications for macroalgae aquaculture[J]. Journal of Marine Science and Engineering, 11(1): 175.
|
[71] |
ROSS F, TARBUCK P, MACREADIE P I, 2022. Seaweed afforestation at large-scales exclusively for carbon sequestration: critical assessment of risks, viability and the state of knowledge[J]. Frontiers in Marine Science, 9: 2269.
|
[72] |
SALA E, MAYORGA J, BRADLEY D, et al, 2021. Protecting the global ocean for biodiversity, food and climate[J]. Nature, 592(7854): 397-402.
|
[73] |
SANZ-LAZARO C, SANCHEZ-JEREZ P, 2020. Regional integrated multi-trophic aquaculture (RIMTA): spatially separated, ecologically linked[J]. Journal of Environmental Management, 271: 110921.
|
[74] |
SIEGEL D A, DEVRIES T, DONEY S C, et al, 2021. Assessing the sequestration time scales of some ocean-based carbon dioxide reduction strategies[J]. Environmental Research Letters, 16(10): 104003.
|
[75] |
SIMON C, MCHALE M, SULPICE R, 2022. Applications of Ulva biomass and strategies to improve its yield and composition: a perspective for Ulva aquaculture[J]. Biology, 11(11): 1593.
|
[76] |
SMITH K E, BURROWS M T, HOBDAY A J, et al, 2021. Socioeconomic impacts of marine heatwaves: global issues and opportunities[J]. Science, 374(6566): eabj3593.
|
[77] |
SOFYAN A, IRAWAN A, HERDIAN H, et al, 2022. Effects of various macroalgae species on methane production, rumen fermentation, and ruminant production: a meta-analysis from in vitro and in vivo experiments[J]. Animal Feed Science and Technology, 294: 115503.
|
[78] |
SOLOMON S, QIN D H, MANNING M, et al, 2007. Climate change 2007: the physical science basis[M]. Cambridge: Cambridge University Press.
|
[79] |
TERHAAR J, FRÖLICHER T L, JOOS F, 2021. Southern Ocean anthropogenic carbon sink constrained by sea surface salinity[J]. Science Advances, 7(18): eabd5964.
|
[80] |
TERLOUW T, BAUER C, ROSA L, et al, 2021. Life cycle assessment of carbon dioxide removal technologies: a critical review[J]. Energy & Environmental Science, 14(4): 1701-1721.
|
[81] |
TREVATHAN-TACKETT S M, KELLEWAY J, MACREADIE P I, et al, 2015. Comparison of marine macrophytes for their contributions to blue carbon sequestration[J]. Ecology, 96(11): 3043-3057.
|
[82] |
TROELL M, HENRIKSSON P J G, BUSCHMANN A H, et al, 2022. Farming the ocean-seaweeds as a quick fix for the climate?[J]. Reviews in Fisheries Science & Aquaculture, 31(3): 285-295.
|
[83] |
UL-HAQ I, BUTT M S, AMJAD N, et al, Marine-algal bioactive compounds: a comprehensive appraisal[M]// RAVISHANKARG, AMBATIN, Handbook of algal technologies and phytochemicals. Boca Raton: CRC Press, 2019: 71-80.
|
[84] |
VATSOS I N, REBOURS C, 2015. Seaweed extracts as antimicrobial agents in aquaculture[J]. Journal of Applied Phycology, 27(5): 2017-2035.
|
[85] |
VISCH W, KONONETS M, HALL P O J, et al, 2020. Environmental impact of kelp (Saccharina latissima) aquaculture[J]. Marine Pollution Bulletin, 155: 110962.
|
[86] |
WATANABE K, YOSHIDA G, HORI M, et al, 2020. Macroalgal metabolism and lateral carbon flows can create significant carbon sinks[J]. Biogeosciences, 17(9): 2425-2440.
|
[87] |
WAYNE C K, REEN C S, SHOW P L, et al, 2018. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: a review[J]. Journal of the Taiwan Institute of Chemical Engineers, 91: 332-344.
|
[88] |
WERNBERG T, KRUMHANSL K, FILBEE-DEXTER K, et al, 2019. Status and trends for the world’s kelp forests[M]// SHEPPARD C. World seas: an environmental evaluation: volume III: ecological issues and environmental impacts. 2nd ed. Amsterdam: Elsevier: 57-78.
|
[89] |
WU JIAJUN, KELLER D P, OSCHLIES A, 2023. Carbon dioxide removal via macroalgae open-ocean mariculture and sinking: an Earth system modeling study[J]. Earth System Dynamics, 14(1): 185-221.
|
[90] |
XIAO XI, AGUSTÍ S, YU YAN, et al, 2021. Seaweed farms provide refugia from ocean acidification[J]. Science of The Total Environment, 776: 145192.
|
[91] |
XIE XINFEI, HE ZHILI, HU XIAOJUAN, et al, 2023. The composition, function and assembly mechanism of epiphytic microbial communities on Gracilariopsis lemaneiformis[J]. Journal of Experimental Marine Biology and Ecology, 564: 151909.
|
[92] |
XIONG TIANQI, LI HONGMEI, YUE YUFEI, et al, 2023. Legacy effects of late macroalgal blooms on dissolved inorganic carbon pool through alkalinity enhancement in coastal ocean[J]. Environmental Science & Technology, 57(5): 2186-2196.
|
[93] |
YANG YUFENG, CHAI ZHAOYANG, WANG QING, et al, 2015. Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements[J]. Algal Research, 9: 236-244.
|
[94] |
YU LIANGHONG, ZHENG SHAN, GAO QIANG, 2023. Independent or collaborative management? Regional management strategy for ocean carbon sink trading based on game theory[J]. Ocean & Coastal Management, 235: 106484.
|
[95] |
ZHANG CHUANLUN, SHI TUO, LIU JIHUA, et al, 2022. Eco-engineering approaches for ocean negative carbon emission[J]. Science Bulletin, 67(24): 2564-2573.
doi: 10.1016/j.scib.2022.11.016
pmid: 36604035
|
[96] |
ZHANG CHUANLUN, SHI TUO, LIU JIHUA, et al, 2022. Ecoengineering approaches for ocean negative carbon emission[J]. Science Bulletin, 67(24): 2564-2573.
|
[97] |
ZHU LONGHUAN, HUGUENARD K, ZOU QINGPING, et al, 2020. Aquaculture farms as nature-based coastal protection: Random wave attenuation by suspended and submerged canopies[J]. Coastal Engineering, 160: 103737.
|
[98] |
ZOLLMANN M, RUBINSKY B, LIBERZON A, et al, 2021. Multi-scale modeling of intensive macroalgae cultivation and marine nitrogen sequestration[J]. Communications Biology, 4(1): 848.
doi: 10.1038/s42003-021-02371-z
pmid: 34234264
|