[1] |
凌娟, 梁童茵, 岳维忠, 等, 2023. 热带海草泰来草沉积物真菌的群落结构、功能与分子生态网络研究[J]. 热带海洋学报, 42(5): 64-75.
|
|
LING JUAN, LIANG TONGYIN, YUE WEIZHONG, et al, 2023. Community structure, function, and molecular ecological network of fungi in the tropical seagrass Thalassia hemprichii sediment[J]. Journal of Tropical Oceanography, 42(5): 64-75 (in Chinese with English abstract).
|
[2] |
刘鹏远, 2022. 黄渤海日本鳗草沉积物三域微生物的分布特征、生态功能及驱动因素[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所).
|
|
LIU PENGYUAN, 2022. Studies on the microorganisms of three domains associated with seagrass (Zostera japonica) meadows: distributions, ecological functions, and environmental drivers[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (in Chinese with English abstract).
|
[3] |
刘鹏远, 张海坤, 陈琳, 等, 2019. 黄渤海海草分布区日本鳗草根际微生物群落结构特征及其功能分析[J]. 微生物学报, 59(8): 1484-1499.
|
|
LIU PENGYUAN, ZHANG HAIKUN, CHEN LIN, et al, 2019. Rhizosphere microbial community structure and function of Zostera japonica in the distribution area of seagrass beds in the Yellow Sea and Bohai Sea[J]. Acta Microbiologica Sinica, 59(8): 1484-1499 (in Chinese with English abstract).
|
[4] |
宋增磊, 2023. 微生物在黄河三角洲互花米草与日本鳗草生态竞争中的作用及机制分析[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所).
|
|
SONG ZENGLEI, 2023. Analysis of the roles and mechanisms of microorganisms in the ecological competition between Spartina alterniflora and Zostera japonica in the yellow river delta[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (in Chinese with English abstract).
|
[5] |
孙延瑜, 2021. 威海泻湖海草床共附生微生物群落结构特征及硫入侵过程[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所).
|
|
SUN YANYU, 2021. Characteristics of microbial community structure and sulfur invasion process in seagrass bed of Weihai lagoon[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (in Chinese with English abstract).
|
[6] |
孙延瑜, 宋增磊, 刘鹏远, 等, 2021. 威海天鹅湖大叶藻(Zostera marina)与日本鳗草(Zostera japonica)根际微生物群落结构及其驱动机制[J]. 微生物学报, 61(9): 2675-2692.
|
|
SUN YANYU, SONG ZENGLEI, LIU PENGYUAN, et al, 2021. Rhizosphere microbial community structure and driving mechanism of Zostera marina and Zostera japonica in Swan Lake, Weihai[J]. Acta Microbiologica Sinica, 61(9): 2675-2692 (in Chinese with English abstract).
|
[7] |
王天雨, 2023. 山东东部沿海两种海草根际微生物群落结构及潜在功能[D]. 烟台: 烟台大学.
|
|
WANG TIANYU, 2023. Rhizosphere microbial community structure and potential function of two species of seagrass in the eastern coast of Shandong Province[D]. Yantai: Yantai University (in Chinese with English abstract).
|
[8] |
徐少春, 2021. 黄渤海鳗草(Zostera marina)种群特征及生态修复研究[D]. 青岛: 中国科学院大学(中国科学院海洋研究所).
|
|
XU SHAOCHUN, 2021. Population characteristics and ecological restoration of the seagrass Zostera marina L. in the Yellow Sea and Bohai Sea[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences (in Chinese with English abstract).
|
[9] |
薛曌, 王兰, 孟华旦尚, 等, 2023. 色林错表层水体真核微生物多样性和群落分布格局[J]. 冰川冻土, 45(5): 1652-1666.
doi: 10.7522/j.issn.1000-0240.2023.0126
|
|
XUE ZHAO, WANG LAN, MENG HUADANSHANG, et al, 2023. Diversity and community distribution pattern of eukaryotic microbes in surface water of Selin Co[J]. Journal of Glaciology and Geocryology, 45(5): 1652-1666 (in Chinese with English abstract).
doi: 10.7522/j.issn.1000-0240.2023.0126
|
[10] |
于培, 2017. 鳗草对沉积物微生物群落的影响及其氮代谢的初步研究[D]. 济南: 山东大学.
|
|
YU PEI, 2017. The influence of Zostera marina on the microbial communities and the preliminary study of nitrogen metabolism[D]. Jinan: Shandong University (in Chinese with English abstract).
|
[11] |
张晓珂, 梁文举, 李琪, 2018. 我国土壤线虫生态学研究进展和展望[J]. 生物多样性, 26(10): 1060-1073.
doi: 10.17520/biods.2018082
|
|
ZHANG XIAOKE, LIANG WENJU, LI QI, 2018. Recent progress and future directions of soil nematode ecology in China[J]. Biodiversity Science, 26(10): 1060-1073 (in Chinese with English abstract).
doi: 10.17520/biods.2018082
|
[12] |
周毅, 江志坚, 邱广龙, 等, 2023. 中国海草资源分布现状、退化原因与保护对策[J]. 海洋与湖沼, 54(5): 1248-1257.
|
|
ZHOU YI, JIANG ZHIJIAN, QIU GUANGLONG, et al, 2023. Distribution status, degradation reasons and protection countermeasures of seagrass resources in China[J]. Oceanologia et Limnologia Sinica, 54(5): 1248-1257 (in Chinese with English abstract).
|
[13] |
AZAM F, MALFATTI F, 2007. Microbial structuring of marine ecosystems[J]. Nature Reviews Microbiology, 5(10): 782-791.
doi: 10.1038/nrmicro1747
pmid: 17853906
|
[14] |
BARTOSZEK L, 2023. The effect of natural organic matter (NOM) on the distribution and resources of mobile phosphorus in the bottom sediments of small retention reservoirs[J]. Aquatic Sciences, 85(4): 107.
|
[15] |
BENGTSSON M M, BÜHLER A, BRAUER A, et al, 2017. Eelgrass leaf surface microbiomes are locally variable and highly correlated with epibiotic eukaryotes[J]. Frontiers in Microbiology, 8: 1312.
doi: 10.3389/fmicb.2017.01312
pmid: 28751881
|
[16] |
CATTOLICO R A, GOËR S L D, 1990. Analysis of chloroplast evolution and phylogeny: A Molecular Approach[C]// GREEN J C, LEADBEATER B S C, DIVER W L. The Chromophyte Algae: Problems and Perspectives. Oxford: Oxford University Press: 85-100.
|
[17] |
CAVICCHIOLI R, RIPPLE W J, TIMMIS K N, et al, 2019. Scientists’ warning to humanity: microorganisms and climate change[J]. Nature Reviews Microbiology, 17(9): 569-586.
|
[18] |
CONTE C, ROTINI A, MANFRA L, et al, 2021. The seagrass holobiont: what we know and what we still need to disclose for its possible use as an ecological indicator[J]. Water, 13(4): 406.
|
[19] |
CÚCIO C, ENGELEN A H, COSTA R, et al, 2016. Rhizosphere microbiomes of European + seagrasses are selected by the plant, but are not species specific[J]. Frontiers in Microbiology, 7: 440.
doi: 10.3389/fmicb.2016.00440
pmid: 27065991
|
[20] |
FOURQUREAN J W, DUARTE C M, KENNEDY H, et al, 2012. Seagrass ecosystems as a globally significant carbon stock[J]. Nature Geoscience, 5(7): 505-509.
|
[21] |
FULTON J M, ARTHUR M A, FREEMAN K H, 2012. Black Sea nitrogen cycling and the preservation of phytoplankton δ15N signals during the Holocene[J]. Global Biogeochemical Cycles, 26(2): GB2030.
|
[22] |
HORINOUCHI M, MIZUNO N, JO Y, et al, 2013. Habitat preference rather than predation risk determines the distribution patterns of filefish Rudarius ercodes in and around seagrass habitats[J]. Marine Ecology Progress Series, 488: 255-266.
|
[23] |
LELES S G, MITRA A, FLYNN K J, et al, 2017. Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance[J]. Proceedings Biological Sciences, 284(1860): 20170664.
|
[24] |
LIU LEMIAN, WANG SHANSHAN, CHEN JIANFENG, 2020. Hysteretic response of microbial eukaryotic communities to gradually decreased nutrient concentrations in eutrophic water[J]. Microbial Ecology, 79(4): 815-822.
doi: 10.1007/s00248-019-01457-w
pmid: 31720759
|
[25] |
MACH M E, WYLLIE-ECHEVERRIA S, CHAN KAI M A, 2014. Ecological effect of a nonnative seagrass spreading in the Northeast Pacific: a review of Zostera japonica[J]. Ocean & Coastal Management, 102: 375-382.
|
[26] |
MANNINO A M, MENÉNDEZ M, OBRADOR B, et al, 2015. The genus Ruppia L. (Ruppiaceae) in the Mediterranean region: an overview[J]. Aquatic Botany, 124: 1-9.
|
[27] |
MICHALSKI R, PECYNA-UTYLSKA P, KERNERT J, 2021. Determination of ammonium and biogenic amines by ion chromatography. A review[J]. Journal of Chromatography A, 1651: 462319.
|
[28] |
MILBRANDT E C, GREENAWALT-BOSWELL J, SOKOLOFF P D, 2008. Short-term indicators of seagrass transplant stress in response to sediment bacterial community disruption[J]. Botanica Marina, 51(2): 103-111.
|
[29] |
OGDEN J, 2006. Seagrasses: biology, ecology and conservation[J]. Marine Ecology, 27(4): 431-432.
|
[30] |
OIKONOMOU A, FILKER S, BREINER H W, et al, 2015. Protistan diversity in a permanently stratified meromictic lake (Lake Alatsee, SW Germany)[J]. Environmental Microbiology, 17(6): 2144-2157.
doi: 10.1111/1462-2920.12666
pmid: 25330396
|
[31] |
ORTH R J, LEFCHECK J S, MCGLATHERY K S, et al, 2020. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services[J]. Science Advances, 6(41): eabc6434.
|
[32] |
PATERSON D M, HAGERTHEY S E, STUDIES E, 2001. Microphytobenthos in contrasting coastal ecosystems: Biology and dynamics[M]// REISEK,ed.. Ecological comparisons of sedimentary shores, ecological studies. Berlin: Springer-Verlag: 105-125.
|
[33] |
RUECKERT S, HORÁK A, 2017. Archigregarines of the English channel revisited: new molecular data on Selenidium species including early described and new species and the uncertainties of phylogenetic relationships[J]. PLoS One, 12(11): e0187430.
|
[34] |
SARDANS J, BARTRONS M, MARGALEF O, et al, 2017. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments[J]. Global Change Biology, 23(3): 1282-1291.
doi: 10.1111/gcb.13384
pmid: 27272953
|
[35] |
SARKAR A, CHAKRABORTY P, NAGENDER NATH B, 2016. Distribution and nature of sedimentary organic matter in a tropical estuary: an indicator of human intervention on environment[J]. Marine Pollution Bulletin, 102(1): 176-186.
doi: 10.1016/j.marpolbul.2015.11.013
pmid: 26644196
|
[36] |
SCHRATZBERGER M, INGELS J, 2018. Meiofauna matters: The roles of meiofauna in benthic ecosystems[J]. Journal of Experimental Marine Biology and Ecology, 502: 12-25.
|
[37] |
SCHRÉVEL J, VALIGUROVÁ A, PRENSIER G, et al, 2016. Ultrastructure of Selenidium pendula, the type species of archigregarines, and phylogenetic relations to other marine api complexa[J]. Protist, 167(4): 339-368.
|
[38] |
SHORT F T, POLIDORO B, LIVINGSTONE S R, et al, 2011. Extinction risk assessment of the world’s seagrass species[J]. Biological Conservation, 144(7): 1961-1971.
|
[39] |
SUN HAO, WANG TIANYU, LIU SHUAI, et al, 2024. Novel insights into the rhizosphere and seawater microbiome of Zostera marina in diverse mariculture zones[J]. Microbiome, 12(1): 27.
|
[40] |
TARQUINIO F, HYNDES G A, LAVEROCK B, et al, 2019. The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning[J]. FEMS Microbiology Letters, 366(6): fnz057.
|
[41] |
TROMBETTA T, VIDUSSI F, ROQUES C, et al, 2020. Marine microbial food web networks during phytoplankton bloom and non-bloom periods: warming favors smaller organism interactions and intensifies trophic cascade[J]. Frontiers in Microbiology, 11: 502336.
|
[42] |
TURNER T R, JAMES E K, POOLE P S, 2013. The plant microbiome[J]. Genome Biology, 14(6): 209.
doi: 10.1186/gb-2013-14-6-209
pmid: 23805896
|
[43] |
UGARELLI K, CHAKRABARTI S, LAAS P, et al, 2017. The seagrass holobiont and its microbiome[J]. Microorganisms, 5(4): 81.
|
[44] |
VALENTI J L, GROTHUES T M, ABLE K W, 2023. Subtidal fish habitat in a temperate lagoonal estuary: comparison of salt marsh creeks, sand, and seagrass[J]. Estuaries and Coasts, 46(1): 246-264.
|
[45] |
WAHYUDI A J, RAHMAWATI S, IRAWAN A, et al, 2020. Assessing carbon stock and sequestration of the tropical seagrass meadows in Indonesia[J]. Ocean Science Journal, 55(1): 85-97.
|
[46] |
WAN DONGJIE, 2023. Research progress on degradation factors and restoration technologies of seagrass beds[J]. OAJRC Environmental Science, 4(1): 40-44.
|
[47] |
WANG YAPING, LI GUIHAO, SHI FEI, et al, 2020. Taxonomic diversity of pico-/nanoeukaryotes is related to dissolved oxygen and productivity, but functional composition is shaped by limiting nutrients in eutrophic coastal oceans[J]. Frontiers in Microbiology, 11: 601037.
|
[48] |
WORDEN A Z, FOLLOWS M J, GIOVANNONI S J, et al, 2015. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes[J]. Science, 347(6223): 1257594.
|
[49] |
WU PENGFEI, LI DONGXU, KONG LINGFEN, et al, 2020. The diversity and biogeography of microeukaryotes in the euphotic zone of the northwestern Pacific Ocean[J]. Science of The Total Environment, 698: 134289.
|
[50] |
XU SHAOCHUN, QIAO YONGLIANG, XU SHUAI, et al, 2021. Diversity, distribution and conservation of seagrass in coastal waters of the Liaodong Peninsula, North Yellow Sea, northern China: Implications for seagrass conservation[J]. Marine Pollution Bulletin, 167: 112261.
|
[51] |
XU SHAOCHUN, XU SHUAI, ZHOU YI, et al, 2020. Sonar and in situ surveys of eelgrass distribution, reproductive effort, and sexual recruitment contribution in a eutrophic bay with intensive human activities: Implication for seagrass conservation[J]. Marine Pollution Bulletin, 161: 111706.
|
[52] |
ZHANG XIA, WU YUNCHAO, LIU SONGLIN, et al, 2024. Plant growth and development of tropical seagrass determined rhizodeposition and its related microbial community[J]. Marine Pollution Bulletin, 199: 115940.
|
[53] |
ZHOU WEIGUO, LING JUAN, SHEN XIAOMEI, et al, 2024. Inoculation with plant growth-promoting rhizobacteria improves seagrass Thalassia hemprichii photosynthesis performance and shifts rhizosphere microbiome[J]. Marine Environmental Research, 193: 106260.
|