| [1] |
关凤杰, 洪义国, 吴佳鹏, 等, 2017. 发展一种小体系连续快速测定海洋水体溶解性铵盐的方法[J]. 生态科学, 36(2): 42-48.
|
|
GUAN FENGJIE, HONG YIGUO, WU JIAPENG, et al, 2017. A fast sodium hypobromite oxidation method for the sequential determination of ammonia nitrogen in small volume[J]. Ecological Science, 36(2): 42-48 (in Chinese with English abstract).
|
| [2] |
韩磊, 胡盎, 任明磊, 等, 2023. 湖泊微生物群落及其介导的碳循环过程[J]. 生命科学, 35(12): 1613-1629.
|
|
HAN LEI, HU ANG, REN MINGLEI, et al, 2023. Lake microbial communities and their mediated carbon cycling processes[J]. Chinese Bulletin of Life Sciences, 35(12): 1613-1629 (in Chinese with English abstract).
|
| [3] |
洪义国, 张宝善, 吴佳鹏, 等, 2025. 河口近海N2O的分布特征及微生物代谢驱动机制[J]. 热带海洋学报: 1-13.
|
|
HONG YIGUO, ZHANG BAOSHAN, WU JIAPENG, et al, 2025. Distribution characteristics and microbial metabolic driving mechanisms of N2O in estuarine and coastal waters[J]. Journal of Tropical Oceanography: 1-13 (in Chinese with English abstract).
|
| [4] |
王雅君, 张司一, 欧素英, 等, 2025. 基于短时调和分析的广东惠州双月湾潟湖体系潮汐动力特征分析[J]. 热带海洋学报, 44(1): 93-107.
|
|
WANG YAJUN, ZHNAG SIYI, OU SUYING, et al, 2025. Analysis of tidal hydrodynamics characteristics of the Shuangyue Bay Lagoon system in Huizhou, Guangdong based on modified harmonic analysis model using the credo of smoothness[J]. Journal of Tropical Oceanography, 44(1): 93-107 (in Chinese with English abstract).
|
| [5] |
邢容容, 刘修锦, 邱若峰, 2019. 七里海潟湖湿地近期演变分析及生态修复研究[J]. 海洋开发与管理, 36(11): 64-68.
|
|
XING RONGRONG, LIU XIUJIN, QIU RUOFENG, 2019. Recent evolution analysis and ecological restoration of Qilihai lagoon wetland[J]. Ocean Development and Management, 36(11): 64-68 (in Chinese).
|
| [6] |
杨柳燕, 赵兴青, 肖琳, 等, 2006. 沉积物总氮、总磷联合测定分析方法: CN1869656[P]. 2006-11-29 (in Chinese).
|
| [7] |
杨文焕, 石大钧, 张元, 等, 2020. 高原湖泊沉积物中反硝化微生物的群落特征: 以包头南海湖为例[J]. 中国环境科学, 40(1): 431-438.
|
|
YANG WENHUAN, SHI DAJUN, ZHANG YUAN, et al, 2020. Community characteristics of denitrifying microorganisms in plateau lake sediments— taking Nanhaihu lake as example[J]. China Environmental Science, 40(1): 431-438 (in Chinese with English abstract).
|
| [8] |
张奕璞, 于硕, 黄大吉, 等, 2022. 海南新村潟湖潮汐、潮流特征及其对营养盐的影响[J]. 海洋学研究, 40(2): 69-82.
|
|
ZHANG YIPU, YU SHUO, HUANG DAJI, et al, 2022. Characteristics of tide, tidal current and their effects on nutrients in Xincun Lagoon, Hainan Island[J]. Journal of Marine Sciences, 40(2): 69-82 (in Chinese with English abstract).
|
| [9] |
赵锋, 许海, 詹旭, 等, 2021. 太湖春夏两季反硝化与厌氧氨氧化速率的空间差异及其影响因素[J]. 环境科学, 42(5): 2296-2302.
|
|
ZHAO FENG, XU HAI, ZHAN XU, et al, 2021. Spatial differences and influencing factors of denitrification and ANAMMOX rates in spring and summer in Lake Taihu[J]. Environmental Science, 42(5): 2296-2302 (in Chinese with English abstract).
|
| [10] |
周茜, 彭秋萧, 张才巧, 等, 2021. 贵州草海沉积物中养分的空间分布与评价[J]. 西南大学学报(自然科学版), 43(11): 33-39.
|
|
ZHOU XI, PENG QIUXIAO, ZHANG CAIQIAO, et al, 2021. Spatial distribution and evaluation of nutrients in the sediments of Caohai in Guizhou[J]. Journal of Southwest University (Natural Science Edition), 43(11): 33-39 (in Chinese with English abstract).
|
| [11] |
ABDULLAH AL M, ZHANG DANDAN, LIU SIRUI, et al, 2025. Community assembly mechanisms of nirK- and nirS-type denitrifying bacteria in sediments of eutrophic Lake Taihu, China[J]. Current Microbiology, 82(1): 53.
doi: 10.1007/s00284-024-04032-w
|
| [12] |
ADLAM K, 2014. Coastal lagoons: Geologic evolution in two phases[J]. Marine Geology, 355: 291-296.
doi: 10.1016/j.margeo.2014.06.005
|
| [13] |
BACOSA H P, ERDNER D L, ROSENHEIM B E, et al, 2018. Hydrocarbon degradation and response of seafloor sediment bacterial community in the northern Gulf of Mexico to light Louisiana sweet crude oil[J]. The ISME Journal, 12(10): 2532-2543.
doi: 10.1038/s41396-018-0190-1
|
| [14] |
DENG XUZHE, XU TINGTING, ZHANG FANGQI, et al, 2024. Effects of warming and fertilization on nirK-, nirS- and nosZ-type denitrifier communities in paddy soil[J]. Science of the Total Environment, 955: 177057.
doi: 10.1016/j.scitotenv.2024.177057
|
| [15] |
GAO DENGZHOU, LIU CHENG, LI XIAOFEI, et al, 2022. High importance of coupled nitrification-denitrification for nitrogen removal in a large periodically low-oxygen estuary[J]. Science of The Total Environment, 846: 157516.
doi: 10.1016/j.scitotenv.2022.157516
|
| [16] |
GAVRIILIDOU A, GUTLEBEN J, VERSLUIS D, et al, 2020. Comparative genomic analysis of Flavobacteriaceae: insights into carbohydrate metabolism, gliding motility and secondary metabolite biosynthesis[J]. BMC Genomics, 21(1): 569.
doi: 10.1186/s12864-020-06971-7
pmid: 32819293
|
| [17] |
HALLIN S, PHILIPPOT L, LÖFFLER F E, et al, 2018. Genomics and ecology of novel N2O-reducing microorganisms[J]. Trends in Microbiology, 26(1): 43-55.
doi: 10.1016/j.tim.2017.07.003
|
| [18] |
HAN DONGCHEN, HONG YIGUO, WU JIAPENG, et al, 2024. Salinity and pH related microbial nitrogen removal in the largest coastal lagoon of Chinese mainland (Pinqing Lagoon)[J]. Marine Pollution Bulletin, 201: 116181.
doi: 10.1016/j.marpolbul.2024.116181
|
| [19] |
HE GANG, DENG DANLI, DELGADO-BAQUERIZO M, et al, 2025. Global relative importance of denitrification and anammox in microbial nitrogen loss across terrestrial and aquatic ecosystems[J]. Advanced Science, 12(8): 2406857.
doi: 10.1002/advs.v12.8
|
| [20] |
HONFO K J, CHAIGNEAU A, MOREL Y, et al, 2024. Water mass circulation and residence time using Eulerian approach in a large coastal lagoon (Nokoué Lagoon, Benin, West Africa)[J]. Ocean Modelling, 190: 102388.
doi: 10.1016/j.ocemod.2024.102388
|
| [21] |
JIN PENG, CHEN YINYAN, YAO RUI, et al, 2019. New insight into the nitrogen metabolism of simultaneous heterotrophic nitrification-aerobic denitrification bacterium in mRNA expression[J]. Journal of Hazardous Materials, 371: 295-303.
doi: S0304-3894(19)30278-X
pmid: 30856440
|
| [22] |
KANG LIJUAN, ZHU MENGYUAN, ZHU GUANGWEI, et al, 2024. Decreasing denitrification rates poses a challenge to further decline of nitrogen concentration in Lake Taihu, China[J]. Water Research, 256: 121565.
doi: 10.1016/j.watres.2024.121565
|
| [23] |
KENNISH M, PAERL H, 2010. Coastal lagoons: critical habitats of environmental change[M]. Boca Raton: CRC Press.
|
| [24] |
LAWSON C E, WU SHA, BHATTACHARJEE A S, et al, 2017. Metabolic network analysis reveals microbial community interactions in anammox granules[J]. Nature Communications, 8: 15416.
doi: 10.1038/ncomms15416
pmid: 28561030
|
| [25] |
LI SHUYAO, SONG XINWEI, SONG YIFAN, et al, 2024a. Tackling global biogeography and drivers of soil microbial dehalogenation traits and taxa: Insights from metagenomic profiling based on a curated dehalogenase database[J]. Soil Biology and Biochemistry, 198: 109553.
doi: 10.1016/j.soilbio.2024.109553
|
| [26] |
LI XINYANG, CHENG XUEYU, CHENG KEKE, et al, 2024b. The influence of tide-brought nutrients on microbial carbon metabolic profiles of mangrove sediments[J]. Science of the Total Environment, 906: 167732.
doi: 10.1016/j.scitotenv.2023.167732
|
| [27] |
LIAO HU, LIN XIAOLAN, LI YUQIAN, et al, 2020. Reclassification of the taxonomic framework of orders Cellvibrionales, Oceanospirillales, Pseudomonadales, and Ateromonadales in class Gammaproteobacteria through phylogenomic tree analysis[J]. mSystems, 5(5): e00543-20.
|
| [28] |
LLORET J, MARÍN A, MARÍN-GUIRAO L, 2008. Is coastal lagoon eutrophication likely to be aggravated by global climate change?[J]. Estuarine, Coastal and Shelf Science, 78(2): 403-412.
doi: 10.1016/j.ecss.2008.01.003
|
| [29] |
LUN JIAQI, ZHOU WENXI, SUN MENGYUE, et al, 2024. Meta-analysis: Global patterns and drivers of denitrification, anammox and DNRA rates in wetland and marine ecosystems[J]. Science of the Total Environment, 954: 176694.
doi: 10.1016/j.scitotenv.2024.176694
|
| [30] |
NGUGI D K, SALCHER M M, ANDREI A S, et al, 2023. Postglacial adaptations enabled colonization and quasi-clonal dispersal of ammonia-oxidizing archaea in modern European large lakes[J]. Science Advances, 9(5): eadc9392.
|
| [31] |
O’CONNOR B L, HONDZO M, 2008. Enhancement and inhibition of denitrification by fluid-flow and dissolved oxygen flux to stream sediments[J]. Environmental Science & Technology, 42(1): 119-125.
doi: 10.1021/es071173s
|
| [32] |
QI YUQI, FU RENCHUAN, YAN CHAO, et al, 2025. Enrichment of a heterotrophic nitrifying and aerobic denitrifying bacterial consortium: Microbial community succession and nitrogen removal characteristics and mechanisms[J]. Bioresource Technology, 419: 132013.
doi: 10.1016/j.biortech.2024.132013
|
| [33] |
SUN LIFEI, QIAO YANCI, SONG LIQUAN, et al, 2025. Responses of N2O production and associated functional genes to increasing temperature and moisture in surface and subsurface soils of a temperate forest[J]. Pedobiologia, 108.
|
| [34] |
TAIT K, AIRS R L, WIDDICOMBE C E, et al, 2015. Dynamic responses of the benthic bacterial community at the Western English Channel observatory site L4 are driven by deposition of fresh phytodetritus[J]. Progress in Oceanography, 137: 546-558.
doi: 10.1016/j.pocean.2015.04.020
|
| [35] |
VIPINDAS P V, JABIR T, VENKATACHALAM S, et al, 2023. Vertical segregation and phylogenetic characterization of archaea and archaeal ammonia monooxygenase gene in the water column of the western Arctic Ocean[J]. Extremophiles, 27(3): 24.
doi: 10.1007/s00792-023-01310-6
pmid: 37668803
|
| [36] |
WANG JING, KAN JINJUN, QIAN GANG, et al, 2019. Denitrification and anammox: Understanding nitrogen loss from Yangtze Estuary to the East China Sea (ECS)[J]. Environmental Pollution, 252(Part B): 1659-1670.
doi: S0269-7491(18)34216-7
pmid: 31284208
|
| [37] |
WANG YAJING, DONG XUHUI, XIAN HANBIAO, et al, 2025. Emerging environmental risks to the largest coastal lagoon (Pinqing Lagoon) on the Chinese mainland: Assessment through a water-sediment-ecological perspective[J]. Marine Pollution Bulletin, 212: 117498.
doi: 10.1016/j.marpolbul.2024.117498
|
| [38] |
WARD N D, MEGONIGAL J P, BOND-LAMBERTY B, et al, 2020. Representing the function and sensitivity of coastal interfaces in Earth system models[J]. Nature Communications, 11: 2458.
doi: 10.1038/s41467-020-16236-2
pmid: 32424260
|
| [39] |
XIAO XUN, XIE GUIXIAN, YANG ZEHUI, et al, 2021. Variation in abundance, diversity, and composition of nirK and nirS containing denitrifying bacterial communities in a red paddy soil as affected by combined organic-chemical fertilization[J]. Applied Soil Ecology, 166: 104001.
doi: 10.1016/j.apsoil.2021.104001
|