热带海洋学报 ›› 2021, Vol. 40 ›› Issue (3): 44-56.doi: 10.11978/YG2020013CSTR: 32234.14.YG2020013
收稿日期:
2021-01-08
修回日期:
2021-02-21
出版日期:
2021-05-10
发布日期:
2021-02-21
通讯作者:
郑金海
作者简介:
郑金海(1972—), 男, 福建省莆田市人, 教授, 博士, 从事港口、航道、海岸及近海工程研究。email: 基金资助:
ZHENG Jinhai1,2(), SHI Jian1,2, CHEN Songgui3
Received:
2021-01-08
Revised:
2021-02-21
Online:
2021-05-10
Published:
2021-02-21
Contact:
ZHENG Jinhai
Supported by:
摘要:
珊瑚岛礁海岸波流动力复杂、地貌形态特殊、工程响应未知, 波浪传播变形和波生环流对建筑物安全、地形地貌演变、防灾减灾和生态环境保护都有重要影响。本文从大范围大洋海脊导波与岛礁波浪俘获、中等尺度的礁坪-潟湖-裂口系统波流特性、建筑物前沿的局部波流特性及工程响应等三种不同空间尺度上综述了波流运动特性研究的新进展, 主要包括深水大范围的海脊波浪引导与岛礁波浪俘获的理论解析、礁坪-潟湖-裂口系统整体物理模型实验、基于大水槽实验的建筑物影响下波流演化过程及越浪量和波浪力计算方法, 并提出亟需深入研究的重点内容。
中图分类号:
郑金海, 时健, 陈松贵. 珊瑚岛礁海岸多尺度波流运动特性研究新进展[J]. 热带海洋学报, 2021, 40(3): 44-56.
ZHENG Jinhai, SHI Jian, CHEN Songgui. Recent research advances on multi-scale coastal wave and current characteristics of coral reefs and islands[J]. Journal of Tropical Oceanography, 2021, 40(3): 44-56.
[1] | 陈松贵, 张华庆, 陈汉宝, 等, 2018. 不规则波在筑堤珊瑚礁上传播的大水槽实验研究[J]. 海洋通报, 37(5):576-582. |
CHEN SONGGUI, ZHANG HUAQING, CHEN HANBAO, et al, 2018. Experimental study of irregular wave transformation on reefs with seawalls in large wave flume[J]. Marine Science Bulletin, 37(5):576-582 (in Chinese with English abstract). | |
[2] | 陈松贵, 郑金海, 王泽明, 等, 2019a. 珊瑚岛礁护岸对礁坪上极端波浪传播特性的影响[J]. 水利水运工程学报, (6):59-68. |
CHEN SONGGUI, ZHENG JINHAI, WANG ZEMING, et al, 2019a. Experimental study on impact of revetments on extreme wave propagation characteristics on coral reefs[J]. Hydro-Science and Engineering, (6):59-68 (in Chinese with English abstract). | |
[3] | 陈松贵, 王泽明, 张弛, 等, 2019b. 珊瑚礁地形上直立式防浪堤越浪大水槽实验[J]. 科学通报, 64(28-29):3049-3058. |
CHEN SONGGUI, WANG ZEMING, ZHANG CHI, et al, 2019b. Experiment on wave overtopping of a vertical seawall on coral reefs in large wave flume[J]. Chinese Science Bulletin, 64(28-29):3049-3058 (in Chinese with English abstract). | |
[4] | 陈松贵, 陈汉宝, 赵洪波, 等, 2019c. 珊瑚礁地形上胸墙波浪力大水槽试验[J]. 河海大学学报(自然科学版), 47(1):65-70. |
CHEN SONGGUI, CHEN HANBAO, ZHAO HONGBO, et al, 2019c. Experimental study of wave forces on the seawall of coral reef in large wave flume[J]. Journal of Hohai University (Natural Sciences), 47(1):65-70 (in Chinese with English abstract). | |
[5] | 傅丹娟, 2017. 长波在岛屿及海底山上传播变形的解析研究[D]. 南京: 河海大学: 1-125. |
FU DANJUAN, 2017. Analytic investigation of long wave propagation over islands and seamounts[D]. Nanjing: Hohai University: 1-125 (in Chinese with English abstract). | |
[6] | 琚烈红, 2004. 典型胸墙的波浪力和越浪量物理模型试验与分析[D]. 南京: 南京水利科学研究院: 1-78. |
JU LIEHONG, 2004. Physical model test and analysis of wave force and overtopping of typical breast wall[D]. Nanjing: Nanjing Hydraulic Research Institute: 1-78 (in Chinese with English abstract). | |
[7] | 柳玉良, 韩炳辰, 李玉龙, 2010. 斜坡式防波堤护面对胸墙波浪力的影响[J]. 水运工程, (8):36-38. |
LIU YULIANG, HAN BINGCHEN, LI YULONG, 2010. Influence of armor of inclined breakwater on wave force on parapet[J]. Port & Waterway Engineering, (8):36-38 (in Chinese with English abstract). | |
[8] | 梅弢, 高峰, 2013. 波浪在珊瑚礁坪上传播的水槽试验研究[J]. 水道港口, 34(1):13-18. |
MEI TAO, GAO FENG, 2013. Flume experiment research on law of wave propagation in reef flat[J]. Journal of Waterway and Harbor, 34(1):13-18 (in Chinese with English abstract). | |
[9] | 时健, 郑金海, 严以新, 等, 2017. 河口海岸水动力非静压数学模型研究述评[J]. 河海大学学报(自然科学版), 45(2):167-174. |
SHI JIAN, ZHENG JINHAI, YAN YIXIN, et al, 2017. Review of non-hydrostatic numerical models for estuarial and coastal hydrodynamics[J]. Journal of Hohai University (Natural Sciences), 45(2):167-174 (in Chinese with English abstract). | |
[10] | 孙家文, 房克照, 何栋彬, 等, 2018. 岛礁海域的近岸水动力特性研究进展[J]. 水道港口, 39(4):402-409. |
SUN JIAWEN, FANG KEZHAO, HE DONGBIN, et al, 2018. Research progress in coastal hydrodynamic in the environment of reef islands[J]. Journal of Waterway and Harbor, 39(4):402-409 (in Chinese with English abstract). | |
[11] | 王岗, 郑金海, 2015. 非静压波浪模型新理论[C]//第十七届中国海洋(岸)工程学术讨论会论文集(下). 北京: 海洋出版社: 763-772. |
WANG GANG, ZHENG JINHAI, 2015. New theory of nonhydrostatic wave model[C]. Beijing: Ocean Press: 763-772(in Chinese). | |
[12] | 王颖, 薛雷平, 刘桦, 2007. 弧形防浪墙波浪力的试验研究[J]. 水道港口, 28(2):81-85. |
WANG YING, XUE LEIPING, LIU HUA, 2007. Experimental research of wave loads on arc crown wall[J]. Journal of Waterway and Harbor, 28(2):81-85 (in Chinese with English abstract). | |
[13] | 姚宇, 袁万成, 杜睿超, 等, 2015. 岸礁礁冠对波浪传播变形及增水影响的实验研究[J]. 热带海洋学报, 34(6):19-25. |
YAO YU, YUAN WANCHENG, DU RUICHAO, et al, 2015. Experimental study of reef crest’s effects on wave transformation and wave-induced setup over fringing reefs[J]. Journal of Tropical Oceanography, 34(6):19-25 (in Chinese with English abstract). | |
[14] | 姚宇, 2019. 珊瑚礁海岸水动力学问题研究综述[J]. 水科学进展, 30(1):139-152. |
YAO YU, 2019. A review of the coral reef hydrodynamics[J]. Advances in Water Science, 30(1):139-152 (in Chinese with English abstract). | |
[15] | 张庆河, 刘海青, 赵子丹, 1999. 波浪在台阶地形上的破碎[J]. 天津大学学报, 32(2):204-207. |
ZHANG QINGHE, LIU HAIQING, ZHAO ZIDAN, 1999. Wave breaking on a submerged step[J]. Journal of Tianjin University, 32(2):204-207 (in Chinese with English abstract). | |
[16] | BUCHWALD V T, 1969. Long waves on oceanic ridges[J]. Proceedings of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 308(1494):343-354. |
[17] | CHEN SONGGUI, CHEN HANBAO, ZHANG HUAQIN, et al, 2017. Experimental study on wave propagation and deformation over steep reef in large scale wave flume[C]. San Francisco: International Society of Offshore and Polar Engineers: 17-392. |
[18] |
CHU Y H, 1989. Breaking wave forces on vertical walls[J]. Journal of waterway, port, coastal, and ocean engineering, 115(1), 58-65.
doi: 10.1061/(ASCE)0733-950X(1989)115:1(58) |
[19] | DEMIRBILEK Z, NWOGU O G, WARD D L, 2007. Laboratory study of wind effect on runup over fringing reefs[R]. Vicksburg: U.S. Army Engineer Research and Development Center: 1-83. |
[20] |
GOURLAY M R, 1996a. Wave set-up on coral reefs. 1. Set-up and wave-generated flow on an idealised two dimensional horizontal reef[J]. Coastal Engineering, 27(3-4):161-193.
doi: 10.1016/0378-3839(96)00008-7 |
[21] |
GOURLAY M R, 1996b. Wave set-up on coral reefs. 2. Set-up on reefs with various profiles[J]. Coastal Engineering, 28(1-4):17-55.
doi: 10.1016/0378-3839(96)00009-9 |
[22] |
HEARN C, ATKINSON M, FALTER J, 2001. A physical derivation of nutrient-uptake rates in coral reefs: effects of roughness and waves[J]. Coral Reefs, 20(4):347-356.
doi: 10.1007/s00338-001-0185-6 |
[23] |
HENCH J L, LEICHTER J J, MONISMITH S G, 2008. Episodic circulation and exchange in a wave-driven coral reef and lagoon system[J]. Limnology and Oceanography, 53(6):2681-2694.
doi: 10.4319/lo.2008.53.6.2681 |
[24] | HILL E M, BORRERO J C, HUANG ZHENHUA, et al, 2012. The 2010 Mw 7.8 Mentawai earthquake: very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data[J]. Journal of Geophysical Research, 117(B6):B06402. |
[25] |
IMAMURA F, GICA E, TAKAHASHI T, et al, 1995. Numerical simulation of the 1992 Flores tsunami: interpretation of tsunami phenomena in northeastern Flores Island and damage at Babi Island[J]. Pure and Applied Geophysics, 144(3-4):555-568.
doi: 10.1007/BF00874383 |
[26] |
LASHLEY C H, ROELVINK D, VAN DONGEREN A, et al, 2018. Nonhydrostatic and surfbeat model predictions of extreme wave run-up in fringing reef environments[J]. Coastal Engineering, 137:11-27.
doi: 10.1016/j.coastaleng.2018.03.007 |
[27] |
LONGUET-HIGGINS M S, 1968. On the trapping of waves along a discontinuity of depth in a rotating ocean[J]. Journal of Fluid Mechanics, 31(3):417-434.
doi: 10.1017/S0022112068000236 |
[28] |
LOWE R J, FALTER J L, 2015. Oceanic forcing of coral reefs[J]. Annual Review of Marine Science, 7:43-66.
doi: 10.1146/annurev-marine-010814-015834 |
[29] |
LOWE R J, FALTER J L, MONISMITH S G, et al, 2009. Wave-driven circulation of a coastal reef-lagoon system[J]. Journal of Physical Oceanography, 39(4):873-893.
doi: 10.1175/2008JPO3958.1 |
[30] | LOWE R J, HART C, PATTIARATCHI C B, 2010. Morphological constraints to wave-driven circulation in coastal reef-lagoon systems: a numerical study[J]. Journal of Geophysical Research, 115(C9):C09021. |
[31] |
MA GANGFENG, SU S F, LIU SHUGUANG, et al, 2014. Numerical simulation of infragravity waves in fringing reefs using a shock-capturing non-hydrostatic model[J]. Ocean Engineering, 85:54-64.
doi: 10.1016/j.oceaneng.2014.04.030 |
[32] | NEWMAN A V, HAYES G, WEI YONG, et al, 2011. The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation[J]. Geophysical Research Letters, 38(5):L05302. |
[33] |
PRESTO M K, OGSTON A S, STORLAZZI C D, et al, 2006. Temporal and spatial variability in the flow and dispersal of suspended-sediment on a fringing reef flat, Molokai, Hawaii[J]. Estuarine, Coastal and Shelf Science, 67(1-2):67-81.
doi: 10.1016/j.ecss.2005.10.015 |
[34] |
SHAW R P, NEU W, 1981. Long-wave trapping by oceanic ridges[J]. Journal of Physical Oceanography, 11(10):1334-1344.
doi: 10.1175/1520-0485(1981)011<1334:LWTBOR>2.0.CO;2 |
[35] |
SHI JIAN, SHI FENGYAN, KIRBY J T, et al, 2015. Pressure decimation and interpolation (PDI) method for a baroclinic non-hydrostatic model[J]. Ocean Modelling, 96:265-279.
doi: 10.1016/j.ocemod.2015.09.010 |
[36] |
SHI JIAN, ZHANG CHI, ZHENG JINHAI, et al, 2018. Modelling wave breaking across coral reefs using a non-hydrostatic model[J]. Journal of Coastal Research, 85(S1):501-505.
doi: 10.2112/SI85-101.1 |
[37] | SMITH E R, HESSER T, SMITH J M, 2012. Two- and three-dimensional laboratory studies of wave breakingdissipation, setup, and runup on reefs [R]. ERDC/CHL TR-12-21. Vicksburg, MS: U.S. Army Engineer Research and Development Center. |
[38] | SYMONDS G, ZHONG LIEJUN, MORTIMER N A, 2011. Effects of wave exposure on circulation in a temperate reef environment[J]. Journal of Geophysical Research, 116(C9):C09010. |
[39] | TAEBI S, LOWE R J, PATTIARATCHI C B, et al, 2011. Nearshore circulation in a tropical fringing reef system[J]. Journal of Geophysical Research, 116(C2):C02016. |
[40] |
TAEBI S, LOWE R J, PATTIARATCHI C B, et al, 2012. A numerical study of the dynamics of the wave-driven circulation within a fringing reef system[J]. Ocean Dynamics, 62(4):585-602.
doi: 10.1007/s10236-011-0514-4 |
[41] |
WANG GANG, LIANG QIUHUA, ZHENG JINHAI, et al, 2019. A new multilayer nonhydrostatic formulation for surface water waves[J]. Journal of Coastal Research, 35(3):693-710.
doi: 10.2112/JCOASTRES-D-18-00022.1 |
[42] |
WANG GANG, LIANG QIUHUA, SHI FENGYAN, et al, 2021. Analytical and numerical investigation of trapped ocean waves along a submerged ridge[J]. Journal of Fluid Mechanics, 915:A54, doi: 10.1017/jfm.2020.1039
doi: 10.1017/jfm.2020.1039 |
[43] |
YAO YU, HUANG ZHENHUA, MONISMITH S G, et al, 2012. 1DH Boussinesq modeling of wave transformation over fringing reefs[J]. Ocean Engineering, 47:30-42.
doi: 10.1016/j.oceaneng.2012.03.010 |
[44] |
YAO YU, HUANG ZHENHUA, MONISMITH S G, et al, 2013. Characteristics of monochromatic waves breaking over fringing reefs[J]. Journal of Coastal Research, 29(1):94-104.
doi: 10.2112/JCOASTRES-D-12-00021.1 |
[45] |
YAO YU, CHEN SONGGUI, ZHENG JINHAI, et al, 2020. Laboratory study on wave transformation and run-up in a 2DH reef-lagoon-channel system[J]. Ocean Engineering, 215, 107907.
doi: 10.1016/j.oceaneng.2020.107907 |
[46] |
YEH H, LIU P, BRIGGS M, et al, 1994. Propagation and amplification of tsunamis at coastal boundaries[J]. Nature, 372(6504):353-355.
doi: 10.1038/372353a0 |
[47] |
ZHENG JINHAI, FU DANJUAN, WANG GANG, 2017. Trapping mechanism for long waves over circular islands with power function profiles[J]. Journal of Ocean University of China, 16(4):655-660.
doi: 10.1007/s11802-017-3404-7 |
[48] |
ZHENG JINHAI, YAO YU, CHEN SONGGUI, et al, 2020. Laboratory study on wave-induced setup and wave-driven current in a 2DH reef-lagoon-channel system[J]. Coastal Engineering, 162:103772.
doi: 10.1016/j.coastaleng.2020.103772 |
[1] | 谢皆烁, 龚延昆, 牛建伟, 何映晖, 陈植武, 许洁馨, 蔡树群. 苏禄—苏拉威西海内孤立波动力参数时空变化特征[J]. 热带海洋学报, 2022, 41(6): 132-142. |
[2] | 刘爽, 经志友, 詹海刚. 基于生成对抗网络模型的热带和亚热带海洋中尺度涡预报研究[J]. 热带海洋学报, 2022, 41(5): 1-16. |
[3] | 徐杰, 过霁冰, 陈智强, 朱智慧, 王琴, 唐燕玲. 洋山港海域一次冷锋型温带风暴潮特征及各影响因子贡献的对比分析[J]. 热带海洋学报, 2022, 41(4): 126-135. |
[4] | 曾毅港, 经志友, 黄小龙, 郑瑞玺. 夏季南海北部粤东陆架锋面的动力特征分析*[J]. 热带海洋学报, 2022, 41(4): 136-145. |
[5] | 宋嘉诚, 戚洪帅, 张弛, 蔡锋, 尹航. 潮汐影响下海滩前滨波浪传播耗能过程分析[J]. 热带海洋学报, 2022, 41(4): 146-153. |
[6] | 马玉婷, 蔡华阳, 杨昊, 刘锋, 陈欧, 谢荣耀, 欧素英, 杨清书. 珠江磨刀门河口水位分布演变特征及其对人类活动的响应*[J]. 热带海洋学报, 2022, 41(2): 52-64. |
[7] | 孙丰霖. 基于证据理论的风暴潮灾害损失评估[J]. 热带海洋学报, 2022, 41(1): 75-81. |
[8] | 李杨, 黄鹏起, 鲁远征, 屈玲, 郭双喜, 岑显荣, 周生启, 张佳政, 丘学林. 基于精细温度观测的南海东北部陆坡-深海盆底层湍流混合*[J]. 热带海洋学报, 2022, 41(1): 62-74. |
[9] | 张旭, 经志友, 郑瑞玺, 黄小龙, 曹海锦. 黑潮延伸体海域典型涡旋的次中尺度特征分析*[J]. 热带海洋学报, 2021, 40(6): 31-40. |
[10] | 杨潇霄, 曹海锦, 经志友. 南海上层海洋次中尺度过程空间差异和季节变化特征[J]. 热带海洋学报, 2021, 40(5): 10-24. |
[11] | 沈倩颖, 季小梅, 张蔚, 徐龑文. 河口挡潮闸对三角洲潮汐不对称时空变化的影响*[J]. 热带海洋学报, 2021, 40(5): 1-9. |
[12] | 谢梅芳, 张萍, 杨昊, 傅林曦, 王恒, 蔡华阳, 杨清书. 珠江“伶仃洋河口湾-虎门-潮汐通道”的潮波传播特征*[J]. 热带海洋学报, 2021, 40(4): 1-13. |
[13] | 旷敏, 姚宇, 陈仙金, 张起铭, 蒋昌波. 采掘坑位置对珊瑚礁海岸波浪传播变形影响试验[J]. 热带海洋学报, 2021, 40(4): 14-21. |
[14] | 张华, 温茜茜, 彭世球. 莫桑比克海峡及其邻近海区正压潮流数值模拟与能量收支分析*[J]. 热带海洋学报, 2021, 40(2): 7-16. |
[15] | 周旋, 李自强, 安玉柱, 张耀文, 杨晓峰. 基于高频地波雷达资料的海南中东部近海表层海流特征[J]. 热带海洋学报, 2021, 40(2): 103-111. |
|