热带海洋学报

• • 上一篇    

基于GDCSM_Argo的西北太平洋中上层海洋热含量与台风的调控与响应关系初探

束波1,张春玲1, 2, 3,苏涵1,胡松1, 2, 3   

  1. 1. 上海海洋大学 海洋科学与生态环境学院, 上海 201306;

    2. 上海海洋大学 海洋科学与技术实验教学示范中心, 上海 201306;

    3. 自然资源部海洋生态监测与修复技术重点实验室, 上海 201306

  • 收稿日期:2025-06-05 修回日期:2025-07-29 接受日期:2025-08-18
  • 通讯作者: 张春玲
  • 基金资助:
    浮标专项外协项目(D-8006-21-0082)

A Preliminary Study on the Regulation and Response Relationship of Upper- and Mid-Ocean Heat Content and Typhoons in the Northwestern Pacific Based on GDCSM_Argo

SHU Bo1, ZHANG Chunling1, 2, 3, SU Han1, HU Song1, 2, 3   

  1. 1. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;

    2. Demonstration Center for Experimental Teaching of Marine Science and Technology, Shanghai Ocean University, Shanghai 201306, China;

    3. Key Laboratory of Marine Ecological Monitoring and Restoration Technologies, MNR, Shanghai 201306, China

  • Received:2025-06-05 Revised:2025-07-29 Accepted:2025-08-18
  • Supported by:

     Float Special Outsourcing Project (D-8006-21-0082)

摘要: 作为全球气候变化的关键指标,海洋热含量能够准确反映地球系统的净能量收支,其时空变化对台风的产生和发展具有重要影响。本文基于一套长时间序列、多参数的全球温盐再分析数据集GDCSM_Argo,通过滞后回归、相关分析等方法,初步探讨了中上层海洋热含量对台风的调控与响应作用。结果表明,近表层海洋热含量直接影响台风发生频率,而中、下层热含量通过垂直混合为台风提供持续能量,且各水层热含量对台风的响应均存在1-6月左右的时间滞后。台风搅拌引发的“冷尾流”效应显著降低了台风路径上的海洋层结稳定性,尤其在台风增强海域(10°N-25°N,120°E-145°E),混合层以下的理查森数低值区与台风最大风速位置高度吻合。热含量和台风的响应关系受异常气候条件影响明显:厄尔尼诺期间,台风东移作用于温跃层较深的区域,风搅拌更易穿透至次表层,将热量向下输送,暂时削弱层结;拉尼娜期间,台风数相对增加,路径西移,台风在高热含量的西太平洋活动。以上结论为深入研究海洋热含量变化对灾害天气过程的调控和响应机制提供了理论依据,同时也证明GDCSM_Argo再分析数据可为系统研究海气相互作用提供数据支撑。

关键词: 海洋热含量, 台风, 调控与响应, 理查森数, 气候变化

Abstract: As a key indicator of global climate change, ocean heat content (OHC) accurately reflects the net energy budget of the Earth system, and its spatiotemporal variations significantly influence the genesis and intensification of typhoons. Based on the GDCSM_Argo global ocean reanalysis dataset featuring long-term time series and multi-parameter observations, this study preliminarily investigates the regulatory and responsive roles of upper- and middle-layer OHC in typhoon activity using lagged regression and correlation analysis. The results demonstrate that near-surface OHC directly modulates typhoon occurrence frequency, while middle and deep OHC sustains typhoon energy through vertical mixing, with all layers exhibiting 1-6 months of lagged response to typhoon activity. The typhoon-induced "cold wake" effect significantly reduces ocean stratification stability along storm tracks, particularly in the typhoon intensification zone (10°N-25°N, 120°E-145°E), where low Richardson number values above the mixed layer highly coincides with the position of the typhoon's maximum wind speed. The OHC-typhoon relationship exhibits notable sensitivity to anomalous climate conditions: during El Niño, typhoons move eastward and affect areas with deeper thermocline layers, making it easier for wind agitation to penetrate the subsurface and transport heat downwards, temporarily weakening stratification; during La Niña, the number of typhoons increases relatively and their paths move westward, with typhoons active in the high heat content western Pacific.. These findings provide theoretical foundations for further research on ocean-atmosphere interaction mechanisms governing extreme weather events, while simultaneously validating GDCSM_Argo reanalysis data as a robust resource for systematic air-sea interaction studies.

Key words: Ocean heat content, typhoon, Regulation and response, Richardson number, climate change