热带海洋学报 ›› 2021, Vol. 40 ›› Issue (1): 111-121.doi: 10.11978/2020022CSTR: 32234.14.2020022
收稿日期:
2020-02-26
修回日期:
2020-05-24
出版日期:
2021-01-10
发布日期:
2020-06-11
通讯作者:
李伟
作者简介:
李爽(1995—), 男, 江苏省江阴市人, 博士研究生, 海洋地质专业, 主要从事海底地貌与深水沉积动力研究。email: 基金资助:
LI Shuang1,2(), LI Wei1,2(
), ZHAN Wenhuan1,2
Received:
2020-02-26
Revised:
2020-05-24
Online:
2021-01-10
Published:
2020-06-11
Contact:
LI Wei
Supported by:
摘要:
超临界浊流影响下的周期阶坎广泛分布在南海东北部台西南盆地的西澎湖峡谷中。由于频繁的构造活动, 常年的台风影响, 以及来自中国台湾河流的大量沉积物供给, 导致这个区域的浊流活动经常发生。本文利用高分辨率的地貌资料, 对西澎湖峡谷发育的23个净侵蚀周期阶坎和10个净沉积周期阶坎进行了形态的定量分析, 并且统计了流经这些周期阶坎的浊流流速。结果显示, 浊流在流经净侵蚀周期阶坎过程中的速度有明显突变, 而在净侵蚀到净沉积周期阶坎的过程中速度也发生了明显的降低, 前者由峡谷中的坡折带导致, 后者则是由限制性环境到非限制性环境的转变造成的。此外, 净沉积周期阶坎主要分布于靠近峡谷口外的西南侧, 这是由于科氏力对浊流影响的结果。研究此区域周期阶坎的形态特征和形成机制能够帮助我们更好地理解海底地形地貌与浊流的相互关系, 对于理解峡谷中的地貌演化具有重要意义。
中图分类号:
李爽, 李伟, 詹文欢. 南海东北部陆缘浊流活动的地貌记录及其形成机制分析[J]. 热带海洋学报, 2021, 40(1): 111-121.
LI Shuang, LI Wei, ZHAN Wenhuan. Geomorphological records of turbidity current activity in the northeastern margin of the South China Sea and analysis of triggering mechanism[J]. Journal of Tropical Oceanography, 2021, 40(1): 111-121.
表1
净侵蚀周期阶坎形态特征统计结果"
H1/m | W1/m | H3/m | W3/m | α/° | β/° | θ/° | Lstep/m | Hstep/m | Ay | |
---|---|---|---|---|---|---|---|---|---|---|
S1 | 463 | 6980 | 445 | 6737 | 1.24 | 1.26 | 0.89 | 2611 | 48 | 0.18 |
S2 | 362 | 7022 | 354 | 6573 | 1.18 | 3.85 | 2.71 | 1729 | 90 | 0.27 |
S3 | 421 | 6508 | 323 | 6871 | 2.36 | 2.69 | 1.07 | 2730 | 87 | 0.45 |
S4 | 359 | 7070 | 334 | 6732 | 1.28 | 6.41 | 3.14 | 2267 | 146 | 0.49 |
S5 | 376 | 7031 | 332 | 6997 | 2.64 | 3.13 | 1.43 | 1825 | 70 | 0.43 |
S6 | 378 | 7225 | 310 | 7609 | 1.78 | 1.88 | 0.35 | 1565 | 24 | 1.29 |
S7 | 325 | 7179 | 300 | 7161 | 0.85 | 3.40 | 2.43 | 2350 | 108 | 0.28 |
S8 | 315 | 8031 | 297 | 8202 | 0.64 | 4.58 | 1.60 | 1347 | 47 | 1.17 |
S9 | 355 | 7884 | 316 | 8191 | 1.17 | 1.30 | 0.34 | 2309 | 32 | 0.67 |
S10 | 325 | 8357 | 283 | 8692 | 1.25 | 6.05 | 2.06 | 1514 | 75 | 1.04 |
S11 | 350 | 8855 | 321 | 9291 | 2.00 | 1.82 | 0.60 | 3311 | 70 | 0.44 |
S12 | 290 | 9132 | 263 | 9135 | 0.24 | 2.21 | 1.61 | 1609 | 47 | 0.49 |
S13 | 308 | 9225 | 275 | 9370 | 1.55 | 1.11 | 0.38 | 2425 | 34 | 0.41 |
S14 | 299 | 9501 | 275 | 9519 | 0.95 | 1.19 | 0.56 | 2731 | 40 | 0.52 |
S15 | 267 | 9538 | 212 | 9978 | 1.90 | 2.69 | 0.99 | 2263 | 68 | 0.45 |
S16 | 219 | 7013 | 202 | 7369 | 0.43 | 1.78 | 0.87 | 2821 | 51 | 0.71 |
S17 | 200 | 7327 | 182 | 7523 | 0.65 | 1.87 | 0.91 | 2059 | 44 | 0.82 |
S18 | 219 | 7740 | 198 | 8161 | 0.42 | 1.15 | 0.38 | 1616 | 17 | 0.96 |
S19 | 110 | 6189 | 38 | 6349 | 0.90 | 2.89 | 0.63 | 3486 | 71 | 1.45 |
S20 | 93 | 5592 | 20 | 5529 | 1.17 | 1.98 | 0.46 | 4730 | 93 | 0.99 |
S21 | 98 | 5995 | 19 | 6317 | 1.34 | 1.62 | 0.33 | 3258 | 46 | 2.03 |
S22 | 47 | 4108 | 32 | 5077 | 1.09 | 3.16 | 1.36 | 2478 | 79 | 0.78 |
S23 | 101 | 4195 | 39 | 5007 | 1.53 | 2.46 | 2.30 | 1479 | 30 | 1.45 |
误差 | ±0.08 | ±0.02 | ±0.11 | ±0.02 | ±0.10 | ±0.12 | ±0.18 | ±0.05 | ±0.18 | ±0.10 |
表1
净侵蚀周期阶坎形态特征统计结果"
H1/m | W1/m | H3/m | W3/m | α/° | β/° | θ/° | Lstep/m | Hstep/m | Ay | |
---|---|---|---|---|---|---|---|---|---|---|
S1 | 463 | 6980 | 445 | 6737 | 1.24 | 1.26 | 0.89 | 2611 | 48 | 0.18 |
S2 | 362 | 7022 | 354 | 6573 | 1.18 | 3.85 | 2.71 | 1729 | 90 | 0.27 |
S3 | 421 | 6508 | 323 | 6871 | 2.36 | 2.69 | 1.07 | 2730 | 87 | 0.45 |
S4 | 359 | 7070 | 334 | 6732 | 1.28 | 6.41 | 3.14 | 2267 | 146 | 0.49 |
S5 | 376 | 7031 | 332 | 6997 | 2.64 | 3.13 | 1.43 | 1825 | 70 | 0.43 |
S6 | 378 | 7225 | 310 | 7609 | 1.78 | 1.88 | 0.35 | 1565 | 24 | 1.29 |
S7 | 325 | 7179 | 300 | 7161 | 0.85 | 3.40 | 2.43 | 2350 | 108 | 0.28 |
S8 | 315 | 8031 | 297 | 8202 | 0.64 | 4.58 | 1.60 | 1347 | 47 | 1.17 |
S9 | 355 | 7884 | 316 | 8191 | 1.17 | 1.30 | 0.34 | 2309 | 32 | 0.67 |
S10 | 325 | 8357 | 283 | 8692 | 1.25 | 6.05 | 2.06 | 1514 | 75 | 1.04 |
S11 | 350 | 8855 | 321 | 9291 | 2.00 | 1.82 | 0.60 | 3311 | 70 | 0.44 |
S12 | 290 | 9132 | 263 | 9135 | 0.24 | 2.21 | 1.61 | 1609 | 47 | 0.49 |
S13 | 308 | 9225 | 275 | 9370 | 1.55 | 1.11 | 0.38 | 2425 | 34 | 0.41 |
S14 | 299 | 9501 | 275 | 9519 | 0.95 | 1.19 | 0.56 | 2731 | 40 | 0.52 |
S15 | 267 | 9538 | 212 | 9978 | 1.90 | 2.69 | 0.99 | 2263 | 68 | 0.45 |
S16 | 219 | 7013 | 202 | 7369 | 0.43 | 1.78 | 0.87 | 2821 | 51 | 0.71 |
S17 | 200 | 7327 | 182 | 7523 | 0.65 | 1.87 | 0.91 | 2059 | 44 | 0.82 |
S18 | 219 | 7740 | 198 | 8161 | 0.42 | 1.15 | 0.38 | 1616 | 17 | 0.96 |
S19 | 110 | 6189 | 38 | 6349 | 0.90 | 2.89 | 0.63 | 3486 | 71 | 1.45 |
S20 | 93 | 5592 | 20 | 5529 | 1.17 | 1.98 | 0.46 | 4730 | 93 | 0.99 |
S21 | 98 | 5995 | 19 | 6317 | 1.34 | 1.62 | 0.33 | 3258 | 46 | 2.03 |
S22 | 47 | 4108 | 32 | 5077 | 1.09 | 3.16 | 1.36 | 2478 | 79 | 0.78 |
S23 | 101 | 4195 | 39 | 5007 | 1.53 | 2.46 | 2.30 | 1479 | 30 | 1.45 |
误差 | ±0.08 | ±0.02 | ±0.11 | ±0.02 | ±0.10 | ±0.12 | ±0.18 | ±0.05 | ±0.18 | ±0.10 |
表2
净沉积周期阶坎形态特征统计结果"
α/° | β/° | θ/° | Lstoss/m | Llee/m | Lstep/m | Hstep/m | Ay | |
---|---|---|---|---|---|---|---|---|
W1 | 1.01 | 1.74 | 0.61 | 876 | 603 | 2248 | 36 | 1.06 |
W2 | 0.99 | 2.74 | 0.82 | 1158 | 1090 | 2228 | 43 | 0.82 |
W3 | 0.72 | 1.62 | 0.72 | 1002 | 1226 | 2647 | 55 | 0.85 |
W4 | 2.19 | 2.83 | 0.36 | 1216 | 1431 | 1905 | 65 | 0.75 |
W5 | 0.97 | 1.32 | 0.70 | 815 | 1090 | 2602 | 45 | 0.47 |
W6 | 1.56 | 2.24 | 0.95 | 826 | 1776 | 2962 | 78 | 0.81 |
W7 | 0.74 | 1.49 | 0.49 | 1330 | 1632 | 3387 | 58 | 0.79 |
W8 | 0.29 | 4.43 | 1.08 | 1490 | 1897 | 1951 | 73 | 0.80 |
W9 | 2.26 | 3.81 | 1.73 | 869 | 1082 | 3104 | 94 | 1.19 |
W10 | 1.58 | 3.80 | 1.03 | 1685 | 1419 | 2323 | 84 | 0.72 |
误差 | ±0.11 | ±0.08 | ±0.08 | ±0.03 | ±0.02 | ±0.02 | ±0.02 | ±0.04 |
表2
净沉积周期阶坎形态特征统计结果"
α/° | β/° | θ/° | Lstoss/m | Llee/m | Lstep/m | Hstep/m | Ay | |
---|---|---|---|---|---|---|---|---|
W1 | 1.01 | 1.74 | 0.61 | 876 | 603 | 2248 | 36 | 1.06 |
W2 | 0.99 | 2.74 | 0.82 | 1158 | 1090 | 2228 | 43 | 0.82 |
W3 | 0.72 | 1.62 | 0.72 | 1002 | 1226 | 2647 | 55 | 0.85 |
W4 | 2.19 | 2.83 | 0.36 | 1216 | 1431 | 1905 | 65 | 0.75 |
W5 | 0.97 | 1.32 | 0.70 | 815 | 1090 | 2602 | 45 | 0.47 |
W6 | 1.56 | 2.24 | 0.95 | 826 | 1776 | 2962 | 78 | 0.81 |
W7 | 0.74 | 1.49 | 0.49 | 1330 | 1632 | 3387 | 58 | 0.79 |
W8 | 0.29 | 4.43 | 1.08 | 1490 | 1897 | 1951 | 73 | 0.80 |
W9 | 2.26 | 3.81 | 1.73 | 869 | 1082 | 3104 | 94 | 1.19 |
W10 | 1.58 | 3.80 | 1.03 | 1685 | 1419 | 2323 | 84 | 0.72 |
误差 | ±0.11 | ±0.08 | ±0.08 | ±0.03 | ±0.02 | ±0.02 | ±0.02 | ±0.04 |
[1] | 丁巍伟, 李家彪, 韩喜球, 等, 2010. 南海东北部海底沉积物波的形态、粒度特征及物源、成因分析[J]. 海洋学报, 32(2):96-105. |
DING WEIWEI, LI JIABIAO, HAN XIQIU, et al, 2010. Geomorphology, grain-size charicteristics, matter source and forming mechanism of sediment waves on the ocean bottom of the northeast South China Sea[J]. Acta Oceanologica Sinica, 32(2):96-105 (in Chinese with English Abstract). | |
[2] | 聂鑫, 罗伟东, 周娇, 2017. 南海东北部澎湖峡谷群沉积特征[J]. 海洋地质前沿, 33(8):18-23. |
NIE XIN, LUO WEIDONG, ZHOU JIAO, 2017. Depositional characteristics of the Penghu Submarine Canyon in the northeastern South China Sea[J]. Marine Geology Frontiers, 33(8):18-23 (in Chinese with English Abstract). | |
[3] | 王海荣, 王英民, 邱燕, 等, 2008. 南海东北部台湾浅滩陆坡的浊流沉积物波的发育及其成因的构造控制[J]. 沉积学报, 26(1):39-45. |
WANG HAIRONG, WANG YINGMIN, QIU YAN, et al, 2008. Development and its tectonic activity’s origin of turbidity current sediment wave in manila trench, the south china sea[J]. Acta Sedimentologica Sinica, 26(1):39-45 (in Chinese with English Abstract). | |
[4] | 王龙樟, 姚永坚, 林卫兵, 等, 2018. 南海南部沉积物波: 软变形及其触发机制[J]. 地球科学, 43(10):3462-3470. |
WANG LONGZHANG, YAO YONGJIAN, LIN WEIBIN, et al, 2018. Sediment waves in the South of South China Sea: soft sediment deformation and its triggering mechanism[J]. Earth Science, 43(10):3462-3470 (in Chinese with English Abstract). | |
[5] | 吴哲, 杨风丽, 钟家良, 等, 2012. 台西南盆地岩石圈伸展及裂后沉降特征分析[J]. 同济大学学报(自然科学版), 40(11):1730-1736. |
WU ZHE, YANG FENGLI, ZHONG JIALIANG, et al, 2012. Analysis of lithospheric extension and postrift subsidence in Taixinan Basin[J]. Journal of Tongji University (Natural Science), 40(11):1730-1736 (in Chinese with English Abstract). | |
[6] | 徐景平, 2014. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 44(10):98-105. |
XU JINGPING, 2014. Turbidity current research in the past century: an overview[J]. Periodical of Ocean University of China, 44(10):98-105 (in Chinese with English Abstract). | |
[7] | 许小勇, 吕福亮, 王大伟, 等, 2018. 周期性阶坎的特征及其对深水沉积研究的意义[J]. 海相油气地质, 23(4):1-14. |
XU XIAOYONG, LÜ FULIANG, WANG DAWEI, et al, 2018. Cyclic steps and significance to deep water sedimentation[J]. Marine Origin Petroleum Geology, 23(4):1-14 (in Chinese with English Abstract). | |
[8] |
易海, 钟广见, 马金凤, 2007. 台西南盆地新生代断裂特征与盆地演化[J]. 石油实验地质, 29(6):560-564.
doi: 10.11781/sysydz200706560 |
YI HAI, ZHONG GUANGJIAN, MA JINFENG, 2007. Fracture characteristics and basin evolution of the Taixinan basin in cenozoic[J]. Petroleum Geology and Experiment, 29(6):560-564 (in Chinese with English Abstract).
doi: 10.11781/sysydz200706560 |
|
[9] | 殷绍如, 王嘹亮, 郭依群, 等, 2015. 东沙海底峡谷的地貌沉积特征及成因[J]. 中国科学: 地球科学, 45(3):275-289. |
YIN SHAORU, WANG LIAOLIANG, GUO YIQUN, et al, 2015. Morphology, sedimentary characteristics, and origin of the Dongsha submarine canyon in the northeastern continental slope of the South China Sea[J]. Science China Earth Sciences, 58(6):971-985. | |
[10] |
BOWEN A J, NORMARK W R, PIPER D J W, 1984. Modelling of turbidity currents on navy submarine fan, California continental borderland[J]. Sedimentology, 31(2):169-185.
doi: 10.1111/sed.1984.31.issue-2 |
[11] |
CARTIGNY M J B, POSTMA G, VAN DEN BERG J H, et al, 2011. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling[J]. Marine Geology, 280(1-4):40-56.
doi: 10.1016/j.margeo.2010.11.006 |
[12] |
CARTIGNY M J B, VENTRA D, POSTMA G, et al, 2014. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: new insights from flume experiments[J]. Sedimentology, 61(3):712-748.
doi: 10.1111/sed.12076 |
[13] | CHANSON H, 2004. Hydraulic jump[M]//CHANSON H. The Hydraulics of Open Channel Flow: an Introduction. 2nd ed. Oxford, UK: Butterworth-Heinemann: 53-63. |
[14] |
CLARE M A, CLARKE J E H, TALLING P J, et al, 2016. Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta[J]. Earth and Planetary Science Letters, 450:208-220.
doi: 10.1016/j.epsl.2016.06.021 |
[15] |
CLARKE J E H, 2016. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics[J]. Nature Communications, 7:11896.
doi: 10.1038/ncomms11896 pmid: 27283503 |
[16] |
COVAULT J A, KOSTIC S, PAULL C K, et al, 2014. Submarine channel initiation, filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps[J]. Sedimentology, 61(4):1031-1054.
doi: 10.1111/sed.12084 |
[17] |
COVAULT J A, KOSTIC S, PAULL C K, et al, 2017. Cyclic steps and related supercritical bedforms: building blocks of deep-water depositional systems, western North America[J]. Marine Geology, 393:4-20.
doi: 10.1016/j.margeo.2016.12.009 |
[18] |
DE LEEUW J, EGGENHUISEN J T, CARTIGNY M J B, 2016. Morphodynamics of submarine channel inception revealed by new experimental approach[J]. Nature Communications, 7:10886.
pmid: 26996440 |
[19] | FANG GUOHONG, WANF GANG, FANG YUE, et al, 2012. A review on the South China Sea western boundary current[J]. Acta Oceanologica Sinica, 31(5):1-10. |
FANG GUOHONG, WANF GANG, FANG YUE, et al, 2012. A review on the South China Sea western boundary current[J]. Acta Oceanologica Sinica, 31(5):1-10. | |
[20] |
FILDANI A, NORMARK W R, KOSTIC S, et al, 2006. Channel formation by flow stripping: Large-scale scour features along the Monterey East Channel and their relation to sediment waves[J]. Sedimentology, 53(6):1265-1287.
doi: 10.1111/sed.2006.53.issue-6 |
FILDANI A, NORMARK W R, KOSTIC S, et al, 2006. Channel formation by flow stripping: Large-scale scour features along the Monterey East Channel and their relation to sediment waves[J]. Sedimentology, 53(6):1265-1287.
doi: 10.1111/sed.2006.53.issue-6 |
|
[21] | GONG CHENGLIN, WANG YINGMIN, PENG XUECHAO, et al, 2012. Sediment waves on the South China Sea Slope off southwestern Taiwan: implications for the intrusion of the Northern Pacific Deep Water into the South China Sea[J]. Marine and Petroleum Geology, 32(1):90-109. |
GONG CHENGLIN, WANG YINGMIN, PENG XUECHAO, et al, 2012. Sediment waves on the South China Sea Slope off southwestern Taiwan: implications for the intrusion of the Northern Pacific Deep Water into the South China Sea[J]. Marine and Petroleum Geology, 32(1):90-109. | |
[22] | KONSOER K, ZINGER J, PARKER G, 2013. Bankfull hydraulic geometry of submarine channels created by turbidity currents: relations between bankfull channel characteristics and formative flow discharge[J]. Journal of Geophysical Research, 118(1):216-228. |
KONSOER K, ZINGER J, PARKER G, 2013. Bankfull hydraulic geometry of submarine channels created by turbidity currents: relations between bankfull channel characteristics and formative flow discharge[J]. Journal of Geophysical Research, 118(1):216-228. | |
[23] |
KOSTIC S, SEQUEIROS O, SPINEWINE B, et al, 2010. Cyclic steps: a phenomenon of supercritical shallow flow from the high mountains to the bottom of the ocean[J]. Journal of Hydro-environment Research, 3(4):167-172.
doi: 10.1016/j.jher.2009.10.002 |
KOSTIC S, SEQUEIROS O, SPINEWINE B, et al, 2010. Cyclic steps: a phenomenon of supercritical shallow flow from the high mountains to the bottom of the ocean[J]. Journal of Hydro-environment Research, 3(4):167-172.
doi: 10.1016/j.jher.2009.10.002 |
|
[24] |
KOSTIC S, 2011. Modeling of submarine cyclic steps: controls on their formation, migration, and architecture[J]. Geosphere, 7(2):294-304.
doi: 10.1130/GES00601.1 |
KOSTIC S, 2011. Modeling of submarine cyclic steps: controls on their formation, migration, and architecture[J]. Geosphere, 7(2):294-304.
doi: 10.1130/GES00601.1 |
|
[25] |
KOSTIC S, 2014. Upper flow regime bedforms on levees and continental slopes: turbidity current flow dynamics in response to fine-grained sediment waves[J]. Geosphere, 10(6):1094-1103.
doi: 10.1130/GES01015.1 |
KOSTIC S, 2014. Upper flow regime bedforms on levees and continental slopes: turbidity current flow dynamics in response to fine-grained sediment waves[J]. Geosphere, 10(6):1094-1103.
doi: 10.1130/GES01015.1 |
|
[26] |
KUANG ZENGGUI, ZHONG GUANGFA, WANG LIAOLIANG, et al, 2014. Channel-related sediment waves on the eastern slope offshore Dongsha Islands, northern South China Sea[J]. Journal of Asian Earth Sciences, 79:540-551.
doi: 10.1016/j.jseaes.2012.09.025 |
KUANG ZENGGUI, ZHONG GUANGFA, WANG LIAOLIANG, et al, 2014. Channel-related sediment waves on the eastern slope offshore Dongsha Islands, northern South China Sea[J]. Journal of Asian Earth Sciences, 79:540-551.
doi: 10.1016/j.jseaes.2012.09.025 |
|
[27] | LEE T Y, TAND C H, TING J S, et al, 1993. Sequence stratigraphy of the Tainan Basin, offshore southwestern Taiwan[J]. Petroleum Geology of Taiwan, 28:119-158. |
LEE T Y, TAND C H, TING J S, et al, 1993. Sequence stratigraphy of the Tainan Basin, offshore southwestern Taiwan[J]. Petroleum Geology of Taiwan, 28:119-158. | |
[28] | LI LEI, GONG CHENGLIN, 2018. Gradual transition from net erosional to net depositional cyclic steps along the submarine distributary channel thalweg in the Rio Muni Basin: a joint 3-D seismic and numerical approach[J]. Journal of Geophysical Research, 123(9):2087-2106. |
LI LEI, GONG CHENGLIN, 2018. Gradual transition from net erosional to net depositional cyclic steps along the submarine distributary channel thalweg in the Rio Muni Basin: a joint 3-D seismic and numerical approach[J]. Journal of Geophysical Research, 123(9):2087-2106. | |
[29] |
MAIER K L, FILDANI A, PAULL C K, et al, 2013. Deep-sea channel evolution and stratigraphic architecture from inception to abandonment from high-resolution autonomous underwater vehicle surveys offshore Central California[J]. Sedimentology, 60(4):935-960.
doi: 10.1111/j.1365-3091.2012.01371.x |
MAIER K L, FILDANI A, PAULL C K, et al, 2013. Deep-sea channel evolution and stratigraphic architecture from inception to abandonment from high-resolution autonomous underwater vehicle surveys offshore Central California[J]. Sedimentology, 60(4):935-960.
doi: 10.1111/j.1365-3091.2012.01371.x |
|
[30] |
NORMARK W R, HESS G R, STOW D A V, et al, 1980. Sediment waves on the monterey fan levee: a preliminary physical interpretation[J]. Marine Geology, 37(1-2):1-18.
doi: 10.1016/0025-3227(80)90009-2 |
NORMARK W R, HESS G R, STOW D A V, et al, 1980. Sediment waves on the monterey fan levee: a preliminary physical interpretation[J]. Marine Geology, 37(1-2):1-18.
doi: 10.1016/0025-3227(80)90009-2 |
|
[31] | NORMARK W R, PIPER D J W, 1991. Initiation processes and flow evolution of turbidity currents: implications for the depositional record[M] //OSBORNE R H. From Shoreline to Abyss: Contributions in Marine Geology in Honor of Francis Parker Shepard. Tulsa: SEPM Society for Sedimentary Geology: 207-230. |
NORMARK W R, PIPER D J W, 1991. Initiation processes and flow evolution of turbidity currents: implications for the depositional record[M] //OSBORNE R H. From Shoreline to Abyss: Contributions in Marine Geology in Honor of Francis Parker Shepard. Tulsa: SEPM Society for Sedimentary Geology: 207-230. | |
[32] |
PAULL C K, USSLER III W, CARESS D W, et al, 2010. Origins of large crescent-shaped bedforms within the axial channel of Monterey Canyon, offshore California[J]. Geosphere, 6(6):755-774.
doi: 10.1130/GES00527.1 |
PAULL C K, USSLER III W, CARESS D W, et al, 2010. Origins of large crescent-shaped bedforms within the axial channel of Monterey Canyon, offshore California[J]. Geosphere, 6(6):755-774.
doi: 10.1130/GES00527.1 |
|
[33] |
PIPER D J W, SAVOYE B, 1993. Processes of late Quaternary turbidity current flow and deposition on the Var deep‐sea fan, north‐west Mediterranean Sea[J]. Sedimentology, 40(3):557-582.
doi: 10.1111/sed.1993.40.issue-3 |
PIPER D J W, SAVOYE B, 1993. Processes of late Quaternary turbidity current flow and deposition on the Var deep‐sea fan, north‐west Mediterranean Sea[J]. Sedimentology, 40(3):557-582.
doi: 10.1111/sed.1993.40.issue-3 |
|
[34] |
POHL F, EGGENHUISEN J T, TILSTON M, et al, 2019. New flow relaxation mechanism explains scour fields at the end of submarine channels[J]. Nature Communications, 10:4425.
pmid: 31562328 |
POHL F, EGGENHUISEN J T, TILSTON M, et al, 2019. New flow relaxation mechanism explains scour fields at the end of submarine channels[J]. Nature Communications, 10:4425.
pmid: 31562328 |
|
[35] | SHU YEQIANG, XUE HUIJIE, WANG DONGXIAO, et al, 2014. Meridional overturning circulation in the South China Sea envisioned from the high‐resolution global reanalysis data GLBa0.08[J]. Journal of Geophysical Research, 119(5):3012-3028. |
SHU YEQIANG, XUE HUIJIE, WANG DONGXIAO, et al, 2014. Meridional overturning circulation in the South China Sea envisioned from the high‐resolution global reanalysis data GLBa0.08[J]. Journal of Geophysical Research, 119(5):3012-3028. | |
[36] |
SPINEWINE B, SEQUEIROS O E, GARCIA M H, et al, 2009. Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity currents. Part II. Morphodynamic evolution of the wedge and of the associated bedforms[J]. Journal of Sedimentary Research, 79(8):608-628.
doi: 10.2110/jsr.2009.065 |
SPINEWINE B, SEQUEIROS O E, GARCIA M H, et al, 2009. Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity currents. Part II. Morphodynamic evolution of the wedge and of the associated bedforms[J]. Journal of Sedimentary Research, 79(8):608-628.
doi: 10.2110/jsr.2009.065 |
|
[37] |
SYMONS W O, SUMNER E J, TALLING P J, et al, 2016. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows[J]. Marine Geology, 371:130-148.
doi: 10.1016/j.margeo.2015.11.009 |
SYMONS W O, SUMNER E J, TALLING P J, et al, 2016. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows[J]. Marine Geology, 371:130-148.
doi: 10.1016/j.margeo.2015.11.009 |
|
[38] |
TALLING P J, WYNN R B, MASSON D G, et al, 2007. Onset of submarine debris flow deposition far from original giant landslide[J]. Nature, 450(7169):541-544.
doi: 10.1038/nature06313 pmid: 18033295 |
TALLING P J, WYNN R B, MASSON D G, et al, 2007. Onset of submarine debris flow deposition far from original giant landslide[J]. Nature, 450(7169):541-544.
doi: 10.1038/nature06313 pmid: 18033295 |
|
[39] |
VELLINGA A J, CARTIGNY M J B, EGGENHUISEN J T, et al, 2018. Morphodynamics and depositional signature of low-aggradation cyclic steps: new insights from a depth-resolved numerical model[J]. Sedimentology, 65(2):540-560.
doi: 10.1111/sed.2018.65.issue-2 |
VELLINGA A J, CARTIGNY M J B, EGGENHUISEN J T, et al, 2018. Morphodynamics and depositional signature of low-aggradation cyclic steps: new insights from a depth-resolved numerical model[J]. Sedimentology, 65(2):540-560.
doi: 10.1111/sed.2018.65.issue-2 |
|
[40] | XUE HUIJIE, CHAI FEI, PETTIGREW N, et al, 2004. Kuroshio intrusion and the circulation in the South China Sea[J]. Journal of Geophysical Research, 109(C2):C02017. |
XUE HUIJIE, CHAI FEI, PETTIGREW N, et al, 2004. Kuroshio intrusion and the circulation in the South China Sea[J]. Journal of Geophysical Research, 109(C2):C02017. | |
[41] |
ZHANG YANWEI, LIU ZHIFEI, ZHAO YULONG, et al, 2018. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea[J]. Geology, 46(8):675-678.
doi: 10.1130/G45178.1 |
ZHANG YANWEI, LIU ZHIFEI, ZHAO YULONG, et al, 2018. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea[J]. Geology, 46(8):675-678.
doi: 10.1130/G45178.1 |
|
[42] |
ZHAO YULONG, LIU ZHIFEI, ZHANG YANWEI, et al, 2015. In situ observation of contour currents in the northern South China Sea: Applications for deepwater sediment transport[J]. Earth and Planetary Science Letters, 430:477-485.
doi: 10.1016/j.epsl.2015.09.008 |
ZHAO YULONG, LIU ZHIFEI, ZHANG YANWEI, et al, 2015. In situ observation of contour currents in the northern South China Sea: Applications for deepwater sediment transport[J]. Earth and Planetary Science Letters, 430:477-485.
doi: 10.1016/j.epsl.2015.09.008 |
|
[43] |
ZHONG GUANGFA, CARTIGNY M J B, KUANG ZENGGUI, et al, 2015. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea[J]. GSA Bulletin, 127(5-6):804-824.
doi: 10.1130/B31003.1 |
ZHONG GUANGFA, CARTIGNY M J B, KUANG ZENGGUI, et al, 2015. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea[J]. GSA Bulletin, 127(5-6):804-824.
doi: 10.1130/B31003.1 |
[1] | 徐超, 龙丽娟, 李莎, 袁丽, 徐晓璐. 南海及其附属岛礁海洋科学考察历史资料系统整编3. 数据共享服务及应用[J]. 热带海洋学报, 2024, 43(5): 158-165. |
[2] | 徐超, 龙丽娟, 李莎, 何云开, 袁丽, 徐晓璐. 南海及其附属岛礁海洋科学考察历史资料系统整编1. 资料整编技术及应用[J]. 热带海洋学报, 2024, 43(5): 143-149. |
[3] | 徐超, 龙丽娟, 李莎, 徐晓璐, 袁丽. 南海及其附属岛礁海洋科学考察历史资料系统整编2. 数据治理技术与应用[J]. 热带海洋学报, 2024, 43(5): 150-157. |
[4] | 柳原, 柯志新, 李开枝, 谭烨辉, 梁竣策, 周伟华. 人类活动和沿岸流影响下的粤东近海浮游动物群落特征[J]. 热带海洋学报, 2024, 43(4): 98-111. |
[5] | 刘玓玓, 张喜洋, 孙富林, 王明壮, 谭飞, 施祺, 王冠, 杨红强. 南海海滩岩微生物群落结构和特定菌株对其成因机制的启示*[J]. 热带海洋学报, 2024, 43(4): 112-122. |
[6] | 江绿苗, 陈天然, 赵宽, 张婷, 许莉佳. 南海北部涠洲岛边缘珊瑚礁的生物侵蚀实验研究[J]. 热带海洋学报, 2024, 43(3): 155-165. |
[7] | 许莉佳, 廖芝衡, 陈辉, 王永智, 黄柏强, 林巧云, 甘健锋, 杨静. 南海北部珊瑚群落结构特征及其对海洋热浪事件的响应[J]. 热带海洋学报, 2024, 43(3): 58-71. |
[8] | 邱燕, 鞠东, 黄文凯, 王英民, 聂鑫. 南海中央海盆海底初始扩张时间的重新认定[J]. 热带海洋学报, 2024, 43(2): 154-165. |
[9] | 赵明辉, 袁野, 张佳政, 张翠梅, 高金尉, 王强, 孙珍, 程锦辉. 南海北部被动陆缘洋陆转换带张裂-破裂研究新进展[J]. 热带海洋学报, 2024, 43(2): 173-183. |
[10] | 黄谕, 王琳, 麦志茂, 李洁, 张偲. 南海热带岛礁生物土壤结皮中细菌的分离及其固砂特性初步研究[J]. 热带海洋学报, 2023, 42(6): 101-110. |
[11] | 王辰燕, 史敬文, 颜安南, 康亚茹, 王煜轩, 覃素丽, 韩民伟, 张瑞杰, 余克服. 有机磷酸酯在南海长棘海星中的生物富集特征及来源解析[J]. 热带海洋学报, 2023, 42(5): 30-37. |
[12] | 李牛, 邸鹏飞, 冯东, 陈多福. 冷泉渗漏对海洋沉积物氧化还原环境地球化学识别的影响——以南海东北部F站位活动冷泉为例*[J]. 热带海洋学报, 2023, 42(5): 144-153. |
[13] | 张智晟, 谢玲玲, 李君益, 李强. 边缘海与开阔海中尺度涡生命周期演化规律对比分析: 以南海和黑潮延伸体为例[J]. 热带海洋学报, 2023, 42(4): 63-76. |
[14] | 杨磊, 温金辉, 王强, 罗希, 黄华明, 何云开, 陈举. 热带气旋影响吕宋海峡输运的研究进展与展望*[J]. 热带海洋学报, 2023, 42(3): 40-51. |
[15] | 赵中贤, 孙珍, 毛云华, 张伙带. 南海北部陆缘不均匀伸展及脉动式构造升降史*[J]. 热带海洋学报, 2023, 42(3): 96-115. |
|