热带海洋学报 ›› 2024, Vol. 43 ›› Issue (1): 137-153.doi: 10.11978/2023023CSTR: 32234.14.2023023

• 海洋调查与观测 • 上一篇    下一篇

结合潮位校正的雷州半岛红树林湿地动态变迁遥感监测

申键1(), 简焯锴2, 欧阳雪敏3, 艾彬2()   

  1. 1.广东省海洋发展规划研究中心, 广东 广州 510000
    2.中山大学海洋科学学院, 南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082
    3.贵州机电职业技术学院, 贵州 都匀 558000
  • 收稿日期:2023-02-23 修回日期:2023-04-11 出版日期:2024-01-10 发布日期:2024-01-19
  • 作者简介:

    申键 (1979—), 男, 广东四会人, 本科, 主要从事海域海岛管理与海洋生态修复研究。email:

  • 基金资助:
    国家自然科学基金项目(42071261); 南方海洋科学与工程广东省实验室(珠海)创新团队建设项目(311020003/311021004)

Remote sensing monitoring of mangrove wetland changes combined with tidal level correction in the Leizhou Peninsula

SHEN Jian1(), JIAN Zhuokai2, OUYANG Xuemin3, AI Bin2()   

  1. 1. Marine Development Planning Research Center of Guangdong Province, Guangzhou 510000, China
    2. School of Marine Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
    3. Guizhou Technological College of Machinery and Electricity, Duyun 558000, China
  • Received:2023-02-23 Revised:2023-04-11 Online:2024-01-10 Published:2024-01-19
  • Supported by:
    National Natural Science Foundation of China(42071261); Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)(311020003/311021004)

摘要:

红树林生态系统对生态安全、社会和经济可持续发展提供巨大生态支持功能。本文以雷州半岛1995、2005、2015、2020年4期Landsat TM/OLI(Landsat Thematic Mapper/Operational Land Imager)影像为数据源, 考虑不同区域的潮汐规律, 使用决策树分类方法, 并结合人工修正提取了多年红树林的分布范围。根据谷歌同期高分影像进行精度验证, 4期红树林结果的总体精度分别为99.79%、98.95%、99.45%、99.15%, Kappa系数为0.9913、0.9642、0.9624、0.9766 。雷州半岛红树林的时空变化的分析结果表明, 近25年来红树林湿地呈现先减少后增加的模式, 具体表现为: (1) 雷州半岛红树林分布集中分布在英罗港、安铺港、企水港、海康港、乌石港、流沙港、外罗港、雷州湾、通明海和湛江湾等波浪掩护作用良好的泥质滩涂港湾或河口湾内, 徐闻县海安镇至锦和镇与吴川市吴阳镇以东的海岸因相对平直的海岸缺乏对波浪掩护、土壤条件差等因素, 无红树林分布; (2) 雷州半岛各市县均有红树林分布, 早期麻章区红树林面积最大, 其次为雷州市和廉江市, 赤坎区红树林分布最少, 现状廉江市的红树林占比最大; (3) 雷州半岛流失红树林面积多于新增红树林面积, 其中麻章区红树林面积流失最多, 占流失面积的一半; (4) 红树林与非红树林的互相转换类型中水体、滩涂与养殖占主体。区域红树林的精细监测变化分析, 能够为红树林湿地保护部门的工作和生态资源的可持续发展提供依据。

关键词: 红树林, 潮汐, 决策树分类, Landsat, 雷州半岛

Abstract:

Mangrove wetlands provide important ecological support for ecological security, social and economic growth. In this paper, we discuss the temporal and spatial changes of mangrove wetlands in the Leizhou Peninsula during 1995—2020 by decision tree classification combined with the tidal pattern in different regions, based on Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) sensing images. Improving the precision of mangrove information extraction is combined with artificial correction. Using high-resolution Google Earth remote sensing data, the classification accuracies in 1995, 2005, 2015, and 2020 were 99.79%, 98.95%, 99.45%, and 99.15%, and the corresponding Kappa coefficient of those years were 0.9913, 0.9642, 0.9624, and 0.9766. Over the past 25 years, mangrove wetland areas show a trend of early decrease followed by subsequent increase. The results were summarized as follows: (1) the Leizhou Peninsula’s mangrove wetlands are concentrated in wave sheltering bay or estuary, such as the Yingluo Port, Anpu Port, Qishui Port, Haikang Port, Wushi Port, Liusha Port, Wailuo Port, Leizhou Bay, Tongming Sea and Zhanjiang Bay, where silt deposits and tidal flats distribute widely. Lack of the above conditions, there is none of mangrove distribution in the seaboard of the Hai’an town of Xuwen county to the Jinhe town and east of the Wuyang town of Wuchuan county; (2) mangrove uniformly distributes all cities and counties of the Leizhou Peninsula. In early years, the Mazhang town has the largest mangrove, followed by Leizhou and Lianjiang, and Chikan has the least mangrove. Currently, Lianjiang has the largest proportion of mangrove forests; (3) the decreasing mangrove area is more than the increasing mangrove area, and half of area is lost in the Mazhang town; (4) the conversion of mangrove forest and non-mangrove mutual landscape occurrs to water, beach and mariculture. The monitoring analysis of regional mangrove forest provides a basis for the protection of mangrove wetland and the sustainable development of ecological resources.

Key words: mangrove, tidal rhythm, decision tree classification, Landsat, Leizhou Peninsula