[1] |
谢永清, 龙江平, 乔吉果, 等, 2013. 运用岩芯扫描仪划分沉积相的可行性分析[J]. 热带海洋学报, 32(4): 30-35.
|
|
XIE YONGQING, LONG JIANGPING, QIAO JIGUO, et al, 2013. Feasibility of sedimentary facies discrimination by core scanner[J]. Journal of Tropical Oceanography, 32(4): 30-35 (in Chinese with English Abstract).
|
[2] |
BERG R D, SOLOMON E A, 2016. Geochemical constraints on the distribution and rates of debromination in the deep subseafloor biosphere[J]. Geochimica et Cosmochimica Acta, 174: 30-41.
doi: 10.1016/j.gca.2015.11.003
|
[3] |
BURNETT A P, SOREGHAN M J, SCHOLZ C A, et al, 2011. Tropical East African climate change and its relation to global climate: a record from Lake Tanganyika, Tropical East Africa, over the past 90+ kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 303(1-4): 155-167.
doi: 10.1016/j.palaeo.2010.02.011
|
[4] |
CALEY T, ZARAGOSI S, BOURGET J, et al, 2013. Southern Hemisphere imprint for Indo-Asian summer monsoons during the last glacial period as revealed by Arabian Sea productivity records[J]. Biogeosciences, 10(11): 7347-7359.
doi: 10.5194/bg-10-7347-2013
|
[5] |
CALVERT S E, PRICE N B, 1999. Geochemistry of Namibian shelf sediments: coastal upwelling its sediment record, Part A: responses of the sedimentary regime to present coastal upwelling[R]. NATO ASI Series: Plenum Press: 337-375.
|
[6] |
COWIE G L, MOWBRAY S, LEWIS M, et al, 2009. Carbon and nitrogen elemental and stable isotopic compositions of surficial sediments from the Pakistan margin of the Arabian Sea[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 56(6-7): 271-282.
|
[7] |
CROUDACE I W, ROTHWELL R G, 2015. Micro-XRF studies of sediment cores[M]. New York: Springer: 373-390.
|
[8] |
DEPLAZES G, LÜCKGE A, STUUT J B W, et al, 2014. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations[J]. Paleoceanography, 29(2): 99-114.
doi: 10.1002/2013PA002509
|
[9] |
DIRKSEN J P, HENNEKAM R, GEERKEN E, et al, 2019. A novel approach using time-depth distortions to assess multicentennial variability in deep-sea oxygen deficiency in the eastern Mediterranean Sea during Sapropel S5[J]. Paleoceanography and Paleoclimatology, 34(5): 774-786.
doi: 10.1029/2018PA003458
|
[10] |
FORTIN D, FRANCUS P, GEBHARDT A C, et al, 2013. Destructive and non-destructive density determination: method comparison and evaluation from the Laguna Potrok Aike sedimentary record[J]. Quaternary Science Reviews, 71: 147-153.
doi: 10.1016/j.quascirev.2012.08.024
|
[11] |
GE LIANGQUAN, LAI WANCHANG, LIN YANCHANG, 2005. Influence of and correction for moisture in rocks, soils and sediments on in situ XRF analysis[J]. X-Ray Spectrometry, 34(1): 28-34.
doi: 10.1002/(ISSN)1097-4539
|
[12] |
GREGORY B R B, PATTERSON R T, REINHARDT E G, et al, 2019. An evaluation of methodologies for calibrating Itrax X-ray fluorescence counts with ICP-MS concentration data for discrete sediment samples[J]. Chemical Geology, 521: 12-27.
doi: 10.1016/j.chemgeo.2019.05.008
|
[13] |
GRIBBLE G W, 1998. Naturally occurring organohalogen compounds[J]. Accounts of Chemical Research, 31(3): 141-152.
doi: 10.1021/ar9701777
|
[14] |
HANEBUTH T J J, HENRICH R, 2009. Recurrent decadal-scale dust events over Holocene western Africa and their control on canyon turbidite activity (Mauritania)[J]. Quaternary Science Reviews, 28(3-4): 261-270.
doi: 10.1016/j.quascirev.2008.09.024
|
[15] |
HE WEI, LIU JIANGUO, HUANG YUN, et al, 2020. Sea level change controlled the sedimentary processes at the Makran continental margin over the past 13,000 yr[J]. Journal of Geophysical Research: Oceans, 125(3): e2019JC015703.
|
[16] |
HENDY I L, PEDERSEN T F, 2005. Is pore water oxygen content decoupled from productivity on the California Margin? Trace element results from ocean drilling program hole 1017E, San Lucia slope, California[J]. Paleoceanography, 20(4): PA4026.
|
[17] |
HENNEKAM R, DE LANGE G, 2012. X-ray fluorescence core scanning of wet marine sediments: methods to improve quality and reproducibility of high-resolution paleoenvironmental records[J]. Limnology and Oceanography: Methods, 10(12): 991-1003.
doi: 10.4319/lom.2012.10.991
|
[18] |
HUNT J E, WYNN R B, MASSON D G, et al, 2011. Sedimentological and geochemical evidence for multistage failure of volcanic island landslides: a case study from Icod landslide on north Tenerife, Canary Islands[J]. Geochemistry, Geophysics, Geosystems, 12(12): Q12007.
|
[19] |
HUNT J E, WYNN R B, TALLING P J, et al, 2013. Frequency and timing of landslide-triggered turbidity currents within the Agadir Basin, offshore NW Africa: are there associations with climate change, sea level change and slope sedimentation rates?[J]. Marine Geology, 346: 274-291.
doi: 10.1016/j.margeo.2013.09.004
|
[20] |
ITAMBI A C, VON DOBENECK T, MULITZA S, et al, 2009. Millennial-scale northwest African droughts related to Heinrich events and Dansgaard-Oeschger cycles: evidence in marine sediments from offshore Senegal[J]. Paleoceanography, 24(1): PA1205.
|
[21] |
JIA GUODONG, PENG PINGAN, FANG DIANYONG, 2002. Burial of different types of organic carbon in core 17962 from South China Sea since the last glacial period[J]. Quaternary Research, 58(1): 93-100.
doi: 10.1006/qres.2002.2346
|
[22] |
JIAN ZHIMIN, WANG LUEJIANG, KIENAST M, et al, 1999. Benthic foraminiferal paleoceanography of the South China Sea over the last 40,000 years[J]. Marine Geology, 156(1-4): 159-186.
doi: 10.1016/S0025-3227(98)00177-7
|
[23] |
KANDASAMY S, LIN BAOZHI, LOU J Y, et al, 2018. Estimation of marine versus terrigenous organic carbon in sediments off southwestern Taiwan using the bromine to total organic carbon ratio as a proxy[J]. Journal of Geophysical Research: Biogeosciences, 123(10): 3387-3402.
doi: 10.1029/2018JG004674
|
[24] |
KIDO Y, KOSHIKAWA T, TADA R, 2006. Rapid and quantitative major element analysis method for wet fine-grained sediments using an XRF microscanner[J]. Marine Geology, 229(3-4): 209-225.
doi: 10.1016/j.margeo.2006.03.002
|
[25] |
KYLANDER M E, AMPEL L, WOHLFARTH B, et al, 2011. High resolution X‐ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies[J]. Journal of Quaternary Science, 26(1): 109-117.
doi: 10.1002/jqs.1438
|
[26] |
LI GANG, RASHID H, ZHONG LIFENG, et al, 2018. Changes in deep water oxygenation of the South China Sea since the last glacial period[J]. Geophysical Research Letters, 45(17): 9058-9066.
doi: 10.1029/2018GL078568
|
[27] |
MARSHALL M H, LAMB H F, HUWS D, et al, 2011. Late pleistocene and holocene drought events at Lake Tana, the source of the Blue Nile[J]. Global and Planetary Change, 78(3-4): 147-161.
doi: 10.1016/j.gloplacha.2011.06.004
|
[28] |
MARTINEZ P, BERTRAND P, SHIMMIELD G B, et al, 1999. Upwelling intensity and ocean productivity changes off Cape Blanc (northwest Africa) during the last 70,000 years: geochemical and micropalaeontological evidence[J]. Marine Geology, 158(1-4): 57-74.
doi: 10.1016/S0025-3227(98)00161-3
|
[29] |
PEARCE T J, JARVIS I, 1995. High-resolution chemostratigraphy of Quaternary distal turbidites: a case study of new methods for the analysis and correlation of barren sequences[J]. Geological Society, London, Special Publications, 89: 107-143.
doi: 10.1144/GSL.SP.1995.089.01.07
|
[30] |
PEDERSEN T F, PRICE N B, 1980. The geochemistry of iodine and bromine in sediments of the Panama Basin[J]. Journal of Marine Research, 38(3): 397-411.
|
[31] |
PHEDORIN M A, GOLDBERG E L, 2005. Prediction of absolute concentrations of elements from SR XRF scan measurements of natural wet sediments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 543(1): 274-279.
doi: 10.1016/j.nima.2005.01.240
|
[32] |
REBOLLEDO L, SEPÚLVEDA J, LANGE C B, et al, 2008. Late Holocene marine productivity changes in Northern Patagonia- Chile inferred from a multi-proxy analysis of Jacaf channel sediments[J]. Estuarine, Coastal and Shelf Science, 80(3): 314-322.
doi: 10.1016/j.ecss.2008.08.016
|
[33] |
REICHART G J, LOURENS L J, ZACHARIASSE W J, 1998. Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years[J]. Paleoceanography, 13(6): 607-621.
doi: 10.1029/98PA02203
|
[34] |
SCHULTE S, MANGELSDORF K, RULLKÖTTER J, 2000. Organic matter preservation on the Pakistan continental margin as revealed by biomarker geochemistry[J]. Organic Geochemistry, 31(10): 1005-1022.
doi: 10.1016/S0146-6380(00)00108-X
|
[35] |
SEKI A, TADA R, KUROKAWA S, et al, 2019. High-resolution Quaternary record of marine organic carbon content in the hemipelagic sediments of the Japan Sea from bromine counts measured by XRF core scanner[J]. Progress in Earth and Planetary Science, 6(1): 1-12.
doi: 10.1186/s40645-018-0244-z
|
[36] |
TJALLINGII R, RÖHL U, KÖLLING M, et al, 2007. Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments[J]. Geochemistry, Geophysics, Geosystems, 8(2): Q02004.
|
[37] |
VAN PÉE K H, 1996. Biosynthesis of halogenated metabolites by bacteria[J]. Annual Review of Microbiology, 50: 375-399.
doi: 10.1146/micro.1996.50.issue-1
|
[38] |
WELTJE G J, TJALLINGII R, 2008. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application[J]. Earth and Planetary Science Letters, 274(3-4): 423-438.
doi: 10.1016/j.epsl.2008.07.054
|
[39] |
ZIEGLER M, JILBERT T, DE LANGE G J, et al, 2008. Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores[J]. Geochemistry, Geophysics, Geosystems, 9(5): Q05009.
|