Journal of Tropical Oceanography ›› 2022, Vol. 41 ›› Issue (3): 75-90.doi: 10.11978/2021112CSTR: 32234.14.2021112
• Marine Meteorology • Previous Articles Next Articles
SUN Huihang1(), WANG Yiguo2, LUO Jingjia1(
)
Received:
2021-08-30
Revised:
2021-12-24
Published:
2021-12-31
Contact:
LUO Jingjia
E-mail:978982001@qq.com;jjluo@nuist.edu.cn
Supported by:
CLC Number:
SUN Huihang, WANG Yiguo, LUO Jingjia. Impact of ocean data assimilation on initial conditions and skills of seasonal-to- interannual climate prediction[J].Journal of Tropical Oceanography, 2022, 41(3): 75-90.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig. 1
Spatial distribution of correlation coefficient and RMSE/℃ between two experiments' SST initial condition anomalies and observation anomalies. (a) The correlation coefficient of experiment 1; (b) the correlation coefficient of experiment 2. The color filled area in (a) and (b) has passed the 99% significance test. (c) The difference of correlation coefficient between with and without ocean data assimilation (i.e., experiment 2 minus experiment 1). The warm color means improved, and the cold color means deteriorated. (d) RMSE of experiment 1; (e) RMSE of experiment 2. (f) The difference of RMSE between with and without ocean data assimilation (i.e., experiment 1 minus experiment 2). The warm color means improved, and the cold color means deteriorated"
Fig. 5
Time series of two experiments' variable anomalies in the initial conditions of the equatorial ocean regions. From the top to the bottom are the eastern equatorial Pacific region (a-c), the western equatorial Pacific region (d-f), the equatorial Indian Ocean region (g-i), and the equatorial Atlantic region (i-j). From the left are the time series of Z20 anomaly, T100 anomaly and T300 anomaly. The black solid line is the observation, and the blue (red) solid line, R and RMSE are the time series, correlation coefficient and root mean square error of experiment 1 (experiment 2), respectively"
Fig. 7
Spatial distributions of two experiments' anomaly correlation coefficient (ACC) skills at 6 months lead. From the top to the bottom are SST, Z20, T100, and T300, respectively. From the left panels are the results of experiment 1 (a, d, g, j), the results of experiment 2 (b, e, h, k), and the differences (c, f, i, l) between with and without ocean data assimilation (i.e., b minus a). The warm color means improved, and the cold color means deteriorated"
Fig. 12
Differences between two experiments' SST climatic mean states at different months lead. The left panel (a) is observation climatology, the middle panels (b, d, f, h) are SST climatic mean states of experiment 1, the right panels (c, e, g, i) are SST climatic mean states of experiment 2. From the top to the bottom are the results at 6, 12, 18, and 24 months lead over the period Jan 1985-Dec 2014"
Fig. 13
Differences between two experiments' SST climate mean states biases at different months lead. The left panel (a) is observation climatology, the middle panels (b, d, f, h) are SST climate mean states biases of experiment 1, the right panels (c, e, g, i) are SST climate mean states biases of experiment 2. From the top to the bottom are the results at 6, 12, 18, and 24 months lead over the period Jan 1985-Dec 2014"
[1] | 贺嘉樱, 伍继业, 罗京佳, 2020. 南京信息工程大学气候预测系统1.0版简介[J]. 大气科学学报, 43(1): 128-143. |
HE JIAYING, WU JIYE, LUO JINGJIA, 2020. Introduction to climate forecast system version 1.0 of Nanjing University of Information Science and Technology[J]. Transactions of Atmospheric Sciences, 43(1): 128-143. (in Chinese with English abstract) | |
[2] | 吴新荣, 韩桂军, 李冬, 等, 2011. 集合滤波和三维变分混合数据同化方法研究[J]. 热带海洋学报, 30(6): 24-30. |
WU XINRONG, HAN GUIJUN, LI DONG, et al, 2011. A hybrid ensemble filter and 3D variational analysis scheme[J]. Journal of Tropical Oceanography, 30(6): 24-30. (in Chinese with English abstract) | |
[3] |
ACEITUNO P, 1992. El Niño, the Southern Oscillation, and ENSO: confusing names for a complex ocean-atmosphere interaction[J]. Bulletin of the American Meteorological Society, 73(4): 483-485.
doi: 10.1175/1520-0477-73.4.483 |
[4] | BALMASEDA M A, ALVES O J, ARRIBAS A, et al, 2009. Ocean initialization for seasonal forecasts[J]. Oceanography, 22(3): 154-159. |
[5] |
BEHRINGER D W, JI Ming, LEETMAA A, 1998. An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: the ocean data assimilation system[J]. Monthly Weather Review, 126(4): 1013-1021.
doi: 10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2 |
[6] |
BETHKE I, WANG YIGUO, COUNILLON F, et al, 2021. NorCPM1 and its contribution to CMIP6 DCPP[J]. Geoscientific Model Development, 14(11): 7073-7116.
doi: 10.5194/gmd-14-7073-2021 |
[7] |
BOND N A, CRONIN M F, FREELAND H, et al, 2015. Causes and impacts of the 2014 warm anomaly in the NE Pacific[J]. Geophysical Research Letters, 42(9): 3414-3420.
doi: 10.1002/2015GL063306 |
[8] |
BUEHNER M, HOUTEKAMER P L, CHARETTE C, et al, 2010a. Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: description and single-observation experiments[J]. Monthly Weather Review, 138(5): 1550-1566.
doi: 10.1175/2009MWR3157.1 |
[9] |
BUEHNER M, HOUTEKAMER P L, CHARETTE C, et al, 2010b. Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part Ⅱ: one-month experiments with real observations[J]. Monthly Weather Review, 138(5): 1567-1586.
doi: 10.1175/2009MWR3158.1 |
[10] |
BURGERS G, VAN LEEUWEN P J, EVENSEN G, 1998. Analysis scheme in the ensemble Kalman filter[J]. Monthly Weather Review, 126(6): 1719-1724.
doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2 |
[11] | CLARKE A J, VAN GORDER S, 2003. Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content[J]. Geophysical Research Letters, 30(7): 1399. |
[12] |
COUNILLON F, KEENLYSIDE N, BETHKE I, et al, 2016. Flow-dependent assimilation of sea surface temperature in isopycnal coordinates with the Norwegian Climate Prediction Model[J]. Tellus A: Dynamic Meteorology and Oceanography, 68(1): 32437.
doi: 10.3402/tellusa.v68.32437 |
[13] |
CRESSMAN G P, 1959. An operational objective analysis system[J]. Monthly Weather Review, 87(10): 367-374.
doi: 10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2 |
[14] |
DOBLAS-REYES F J, ANDREU-BURILLO I, CHIKAMOTO Y, et al, 2013. Initialized near-term regional climate change prediction[J]. Nature Communications, 4(1): 1715.
doi: 10.1038/ncomms2704 |
[15] | EVENSEN G, 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research: Oceans, 99(C5): 10143-10162. |
[16] | GANDIN L S, 1963. Objective analysis of meteorological field[M]. Leningrad: Gidrometeorologicheskoe Izdate'stvo: 286. |
[17] |
GOOD S A, MARTIN M J, RAYNER N A, 2013. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates[J]. Journal of Geophysical Research: Oceans, 118(12): 6704-6716.
doi: 10.1002/2013JC009067 |
[18] |
GOURETSKI V, RESEGHETTI F, 2010. On depth and temperature biases in bathythermograph data: development of a new correction scheme based on analysis of a global ocean database[J]. Deep Sea Research Part I: Oceanographic Research Papers, 57(6): 812-833.
doi: 10.1016/j.dsr.2010.03.011 |
[19] |
GUALDI S, NAVARRA A, GUILYARDI E, et al, 2003. Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM[J]. Annals of Geophysics, 46(1): 1-26.
doi: 10.4401/ag-6302 |
[20] |
GUILYARDI E, DELECLUSE P, GUALDI S, et al, 2003. Mechanisms for ENSO phase change in a coupled GCM[J]. Journal of Climate, 16(8): 1141-1158.
doi: 10.1175/1520-0442(2003)16<1141:MFEPCI>2.0.CO;2 |
[21] |
GUILYARDI E, 2006. El Niño-mean state-seasonal cycle interactions in a multi-model ensemble[J]. Climate Dynamics, 26(4): 329-348.
doi: 10.1007/s00382-005-0084-6 |
[22] |
GUINEHUT S, DHOMPS A L, LARNICOL G, et al, 2012. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations[J]. Ocean Science, 8(5): 845-857.
doi: 10.5194/os-8-845-2012 |
[23] | HU SHUAI, ZHOU TIANJUN, WU BO, 2020. Improved ENSO prediction skill resulting from reduced climate drift in IAP-DecPreS: a comparison of full-field and anomaly initializations[J]. Journal of Advances in Modeling Earth Systems, 12(2): e2019MS001759. |
[24] |
JI MING, LEETMAA A, 1997. Impact of data assimilation on ocean initialization and El Niño prediction[J]. Monthly Weather Review, 125(5): 742-753.
doi: 10.1175/1520-0493(1997)125<0742:IODAOO>2.0.CO;2 |
[25] | KAROLY D J, HOSKINS B J, 1982. Three dimensional propagation of planetary waves[J]. Journal of the Meteorological Society of Japan. Ser. Ⅱ, 60(1): 109-123. |
[26] | KEENLYSIDE N, LATIF M, BOTZET M, et al, 2005. A coupled method for initializing El Nino Southern Oscillation forecasts using sea surface temperature[J]. Tellus A: Dynamic Meteorology and Oceanography, 57(3): 340-356. |
[27] |
KEENLYSIDE N S, LATIF M, JUNGCLAUS J, et al, 2008. Advancing decadal-scale climate prediction in the North Atlantic sector[J]. Nature, 453(7191): 84-88.
doi: 10.1038/nature06921 |
[28] |
KIM H M, WEBSTER P J, CURRY J A, 2012. Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter[J]. Climate Dynamics, 39(12): 2957-2973.
doi: 10.1007/s00382-012-1364-6 |
[29] |
LARKIN N K, HARRISON D E, 2005. On the definition of El Niño and associated seasonal average U.S. weather anomalies[J]. Geophysical Research Letters, 32(13): L13705.
doi: 10.1029/2005GL022738 |
[30] | LATIF M, ANDERSON D, BARNETT T, et al, 1998. A review of the predictability and prediction of ENSO[J]. Journal of Geophysical Research: Oceans, 103(C7): 14375-14393. |
[31] |
LE DIMET F X, TALAGRAND O, 1986. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects[J]. Tellus A: Dynamic Meteorology and Oceanography, 38(2): 97-110.
doi: 10.3402/tellusa.v38i2.11706 |
[32] |
LORENC A C, 1986. Analysis methods for numerical weather prediction[J]. Quarterly Journal of the Royal Meteorological Society, 112(474): 1177-1194.
doi: 10.1002/qj.49711247414 |
[33] |
LORENZ E N, 1963. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 20(2): 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 |
[34] |
LORENZ E N, 1965. A study of the predictability of a 28-variable atmospheric model[J]. Tellus, 17(3): 321-333.
doi: 10.3402/tellusa.v17i3.9076 |
[35] | LUO JINGJIA, MASSON S, BEHERA S, et al, 2003. South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM[J]. Geophysical Research Letters, 30(24): 2250. |
[36] |
LUO JINGJIA, MASSON S, ROECKNER E, et al, 2005a. Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics[J]. Journal of Climate, 18(13): 2344-2360.
doi: 10.1175/JCLI3404.1 |
[37] |
LUO JINGJIA, MASSON S, BEHERA S, et al, 2005b. Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts[J]. Journal of Climate, 18(21): 4474-4497.
doi: 10.1175/JCLI3526.1 |
[38] |
LUO JINGJIA, MASSON S, BEHERA S K, et al, 2008. Extended ENSO predictions using a fully coupled ocean-atmosphere model[J]. Journal of Climate, 21(1): 84-93.
doi: 10.1175/2007JCLI1412.1 |
[39] | LUO JINGJIA, YUAN CHAOXIA, SASAKI W, et al, 2016. Current status of intraseasonal-seasonal-to-interannual prediction of the Indo-Pacific climate[M]// BEHERA S K, YAMAGATAT. Indo-Pacificclimate variability and predictability. Singapore: World Scientific: 63-107. |
[40] | MADEC G, DELÉCLUSE P, IMBARD M, et al, 1998. OPA 8.1 ocean general circulation model reference manual[R]. Note du Pôle de Modélisation, No. 11. France: Institut Pierre-Simon Laplace: 91. |
[41] |
MAGNUSSON L, ALONSO-BALMASEDA M, CORTI S, et al, 2013. Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors[J]. Climate Dynamics, 41(9-10): 2393-2409.
doi: 10.1007/s00382-012-1599-2 |
[42] |
MARTIN M J, HINES A, BELL M J, 2007. Data assimilation in the FOAM operational short-range ocean forecasting system: a description of the scheme and its impact[J]. Quarterly Journal of the Royal Meteorological Society, 133(625): 981-995.
doi: 10.1002/qj.74 |
[43] | MASSON S, LUO J J, MADEC G, et al, 2005. Impact of barrier layer on winter-spring variability of the southeastern Arabian Sea[J]. Geophysical Research Letters, 32(7): L07703. |
[44] |
MCPHADEN M J, 2003. Tropical Pacific Ocean heat content variations and ENSO persistence barriers[J]. Geophysical Research Letters, 30(9): 1480.
doi: 10.1029/2003GL016872 |
[45] |
MEEHL G A, GODDARD L, MURPHY J, et al, 2009. Decadal prediction: can it be skillful?[J]. Bulletin of the American Meteorological Society, 90(10): 1467-1486.
doi: 10.1175/2009BAMS2778.1 |
[46] |
MEINEN C S, MCPHADEN M J, 2000. Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña[J]. Journal of Climate, 13(20): 3551-3559.
doi: 10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2 |
[47] |
PANOFSKY R A, 1949. Objective weather-map analysis[J]. Journal of Meteorology, 6(6): 386-392.
doi: 10.1175/1520-0469(1949)006<0386:OWMA>2.0.CO;2 |
[48] |
PHILANDER S G H, 1983. El Nino southern oscillation phenomena[J]. Nature, 302(5906): 295-301.
doi: 10.1038/302295a0 |
[49] |
RAJEEVAN M, MCPHADEN M J, 2004. Tropical Pacific upper ocean heat content variations and Indian summer monsoon rainfall[J]. Geophysical Research Letters, 31(18): L18203.
doi: 10.1029/2004GL020631 |
[50] |
RAVICHANDRAN M, BEHRINGER D, SIVAREDDY S, et al, 2013. Evaluation of the global ocean data assimilation system at INCOIS: the tropical Indian Ocean[J]. Ocean Modelling, 69: 123-135.
doi: 10.1016/j.ocemod.2013.05.003 |
[51] |
REYNOLDS R W, RAYNER N A, SMITH T M, et al, 2002. An improved in situ and satellite SST analysis for climate[J]. Journal of Climate, 15(13): 1609-1625.
doi: 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2 |
[52] | ROECKNER E, ARPE K, BENGTSSON L, et al, 1996. The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate[R]. Hamburg, Germany: Max Planck Institute for Meteorology. |
[53] |
ROPELEWSKI C F, HALPERT M S, 1987. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation[J]. Monthly Weather Review, 115(8): 1606-1626.
doi: 10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2 |
[54] |
SAKOV P, OKE P R, 2008. A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters[J]. Tellus A: Dynamic Meteorology and Oceanography, 60(2): 361-371.
doi: 10.1111/j.1600-0870.2007.00299.x |
[55] |
SMITH D M, CUSACK S, COLMAN A W, et al, 2007. Improved surface temperature prediction for the coming decade from a global climate model[J]. Science, 317(5839): 796-799.
doi: 10.1126/science.1139540 |
[56] |
TIMMERMANN A, AN S I, KUG J S, et al, 2018. El Niño-southern oscillation complexity[J]. Nature, 559(7715): 535-545.
doi: 10.1038/s41586-018-0252-6 |
[57] | VALCKE S, TERRAY L, PIACENTINI A, 2000. The OASIS coupler user guide version 2.4[R]. Tech. Rep. TR/CMGC/00-10, CERFACS. |
[58] |
WANG BIN, LEE J Y, KANG I S, et al, 2009a. Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980-2004)[J]. Climate Dynamics, 33(1): 93-117.
doi: 10.1007/s00382-008-0460-0 |
[59] |
WANG YIGUO, COUNILLON F, BETHKE I, et al, 2017. Optimising assimilation of hydrographic profiles into isopycnal ocean models with ensemble data assimilation[J]. Ocean Modelling, 114: 33-44.
doi: 10.1016/j.ocemod.2017.04.007 |
[60] |
WANG YIGUO, COUNILLON F, KEENLYSIDE N, et al, 2019b. Seasonal predictions initialised by assimilating sea surface temperature observations with the EnKF[J]. Climate Dynamics, 53(9): 5777-5797.
doi: 10.1007/s00382-019-04897-9 |
[61] |
XUE YAN, WEN CAIHONG, YANG XIAOSONG, et al, 2017. Evaluation of tropical Pacific observing systems using NCEP and GFDL ocean data assimilation systems[J]. Climate Dynamics, 49(3): 843-868.
doi: 10.1007/s00382-015-2743-6 |
[1] | XUAN Li-li, QIU Yun, XU Jin-dian, Li Zi-qiang. Seasonal variation of the water exchange between the Bay of Bengal and the equatorial eastern Indian Ocean [J]. Journal of Tropical Oceanography, 2015, 34(6): 26-34. |
|