Journal of Tropical Oceanography ›› 2022, Vol. 41 ›› Issue (5): 105-116.doi: 10.11978/2021155CSTR: 32234.14.2021155
• Exploitation of Marine Resources • Previous Articles Next Articles
YE Ziqing1,2,4(), ZHAO Xiangdan1,2,4, CAI Bingna1,3,4, WAN Peng1,3,4, CHEN Hua1,3,4, PAN Jianyu1,3,4(
)
Received:
2021-11-10
Revised:
2021-12-21
Online:
2022-09-10
Published:
2021-12-22
Contact:
PAN Jianyu
E-mail:yeziqing19@mails.ucas.ac.cn;jypan@scsio.ac.cn
Supported by:
CLC Number:
YE Ziqing, ZHAO Xiangdan, CAI Bingna, WAN Peng, CHEN Hua, PAN Jianyu. Oyster hydrolysates alleviate 5-fluorouracil-induced intestinal mucosal injury on S180 tumor-bearing mice*[J].Journal of Tropical Oceanography, 2022, 41(5): 105-116.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Different experimental groups and treatments of animals"
组名 | 是否移植肉瘤细胞株 | 腹腔注射5-氟尿嘧啶剂量/(mg·kg-1) | 每日灌胃牡蛎酶解物剂量/(mg·kg-1) |
---|---|---|---|
正常组 | 否 | — | — |
模型组 | 是 | — | — |
5-氟尿嘧啶组(5-FU组) | 是 | 30 | — |
低剂量牡蛎胰蛋白酶水解物联合5-氟尿嘧啶组(OYH-L+5-FU组) | 是 | 30 | 200 |
中剂量牡蛎胰蛋白酶水解物联合5-氟尿嘧啶组(OYH-M+5-FU组) | 是 | 30 | 400 |
高剂量牡蛎胰蛋白酶水解物联合5-氟尿嘧啶组(OYH-H+5-FU组) | 是 | 30 | 800 |
Tab. 3
Analysis of amino acid composition of OYH"
氨基酸种类 | 氨基酸含量/% | 氨基酸种类 | 氨基酸含量/% |
---|---|---|---|
天冬氨酸 Asp | 3.76 | 亮氨酸 Leu* | 2.39 |
苏氨酸 Thr* | 1.65 | 酪氨酸 Tyr | 1.60 |
丝氨酸 Ser | 1.44 | 苯丙氨酸 Phe* | 1.27 |
谷氨酸 Glu | 5.80 | 赖氨酸 Lys* | 2.58 |
脯氨酸 Pro | 1.99 | 组氨酸 His* | 0.88 |
甘氨酸 Gly | 3.08 | 精氨酸 Arg | 2.30 |
丙氨酸 Ala | 2.46 | 色氨酸Trp* | 0.23 |
缬氨酸 Val* | 1.69 | 氨基酸总量TAA | 35.29 |
蛋氨酸 Met* | 0.60 | 必需氨基酸含量EAA | 12.86 |
异亮氨酸 Ile* | 1.57 | EAA/TAA | 36.44 |
Tab. 4
Effects of OYH combined with 5-FU on body weight, tumor weight and tumor inhibition ratio of mice ($\overline{x}$ ± SD, n = 10)"
组 别 | 初体重/g | 终体重/g | 瘤重/g | 抑瘤率/% |
---|---|---|---|---|
正常组 | 25.99±1.23 | 29.11±1.50 | — | — |
模型组 | 24.27±1.76 | 28.72±2.51 | 1.57±0.30 | — |
5-FU组 | 24.14±0.82 | 25.15±1.41***△△△ | 1.09±0.16*** | 31.00 |
OYH-L+5-FU组 | 24.58±1.41 | 25.95±1.45**△△△ | 0.97±0.18*** | 38.24 |
OYH-M+5-FU组 | 24.61±2.13 | 26.64±1.65*#△△ | 0.85±0.09***### | 46.27 |
OYH-H+5-FU组 | 23.94±1.92 | 26.84±1.83#△△ | 0.82±0.19***## | 47.57 |
Tab. 5
Effects of OYH combined with 5-FU on blood routine of mice ($\overline{x}$ ± SD, n = 10)"
正常组 | 模型组 | 5-FU组 | OYH-L+5-FU组 | OYH-M+5-FU组 | OYH-H+5-FU组 | |
---|---|---|---|---|---|---|
白细胞/(×109L-1) | 6.61±2.58*** | 13.22±3.23 | 4.71±0.99*** | 4.25±1.14*** | 4.12±0.46*** | 4.40±0.81*** |
红细胞/(×1012L-1) | 10.34±0.46*** | 9.03±0.37 | 8.82±0.44 | 9.12±0.41 | 8.70±0.35$ | 8.72±0.49 |
血红蛋白/(g·L-1) | 158.90±6.79*** | 136.20±6.16 | 134.70±5.56 | 138.80±5.12 | 133.00±5.42$ | 133.10±7.46 |
红细胞压积/% | 44.93±1.68*** | 39.13±1.27 | 38.53±1.60 | 39.25±1.40 | 37.73±1.51*$ | 37.68±1.99 |
血小板/(×109L-1) | 1312.30±149.95*** | 1740.90±169.84 | 1601.50±196.78 | 1747.00±257.28 | 1640.40±170.42 | 1817.30±209.85# |
淋巴细胞/% | 80.29±4.17*** | 54.82±6.35 | 62.65±11.25 | 66.71±8.16** | 65.15±6.27** | 65.05±8.91** |
中性粒细胞/% | 17.47±4.08*** | 39.43±6.90 | 32.14±9.61 | 28.57±7.54** | 30.95±6.22** | 30.22±8.20* |
单核细胞/% | 0.87±0.40*** | 4.98±1.57 | 4.22±2.22 | 3.60±0.66* | 2.99±1.00** | 3.77±1.11 |
嗜酸性粒细胞/% | 1.34±0.45** | 0.74±0.19 | 0.99±0.51 | 1.10±0.46* | 0.91±0.48 | 0.89±0.57 |
嗜碱性粒细胞/% | 0.03±0.07 | 0.03±0.05 | 0.00±0.00 | 0.02±0.06 | 0.00±0.00 | 0.07±0.12 |
Tab. 6
Effects of OYH combined with 5-FU on serum biochemical indicators of mice ($\overline{x}$±SD, n=10)"
正常组 | 模型组 | 5-FU组 | OYH-L+5-FU组 | OYH-M+5-FU组 | OYH-H+5-FU组 | |
---|---|---|---|---|---|---|
总蛋白/(g·L-1) | 73.83±7.65*** | 57.35±7.11 | 54.72±6.55 | 61.39±6.85# | 64.36±8.95# | 70.56±8.85**###$ |
白蛋白/(g·L-1) | 48.41±4.62*** | 36.15±5.41 | 29.90±3.23** | 37.25±8.01# | 38.36±9.21# | 44.58±5.75**###$ |
前白蛋白/(mg·L-1) | 3.74±0.70** | 2.71±0.53 | 2.45±0.46 | 2.45±0.53 | 2.47±0.52 | 2.57±0.52 |
转铁蛋白/(g·L-1) | 10.31±1.54** | 8.52±1.08 | 8.64±1.21 | 9.25±1.06 | 9.42±1.18 | 9.32±1.00 |
补体C3 /(g·L-1) | 2.56±0.61*** | 3.78±0.41 | 3.09±1.12 | 3.70±0.52 | 3.84±0.79 | 3.56±0.88 |
补体C4 /(g·L-1) | 0.38±0.07*** | 0.53±0.06 | 0.40±0.08** | 0.43±0.09* | 0.43±0.07** | 0.43±0.08** |
免疫球蛋白A /(g·L-1) | 0.37±0.12*** | 0.13±0.03 | 0.12±0.03 | 0.15±0.03# | 0.17±0.03*## | 0.18±0.05*## |
免疫球蛋白G /(g·L-1) | 13.54±1.98** | 10.57±2.06 | 10.12±0.98 | 10.71±2.39 | 11.47±2.36 | 11.83±1.77# |
免疫球蛋白M /(g·L-1) | 1.72±0.33*** | 1.08±0.19 | 0.99±0.15 | 1.23±0.32# | 1.56±0.26***###$ | 1.64±0.25***### |
[1] | 杜双双, 2018. 蚕丝蛋白肽免疫调节及与化疗的联合作用[D]. 天津: 天津医科大学:11-13. |
DU SHUANGSHUANG, 2018. The immunomodulation and combined effect with chemotherapy of silk fibroin peptide[D]. Tianjin: Tianjin Medical University:11-13. (in Chinese with English abstract) | |
[2] | 胡雪琼, 吴红棉, 刘芷筠, 等, 2009. 近江牡蛎糖胺聚糖的酶解提取及其抗肿瘤活性研究[J]. 食品研究与开发, 30(7): 3-6. |
HU XUEQIONG, WU HONGMIAN, LIU ZHIJUN, et al, 2009. Study on enzymatic preparation of glycosaminoglycan with anti-tumor activity from Crassostrea rivularis crould[J]. Food Research and Development, 30(7): 3-6. (in Chinese with English abstract) | |
[3] | 胡雪琼, 吴红棉, 范秀萍, 等, 2014. 近江牡蛎糖胺聚糖的免疫调节活性研究[J]. 现代食品科技, 30(12): 16-24. |
HU XUEQIONG, WU HONGMIAN, FAN XIUPING, et al, 2014. Immunomodulatory activity of glycosaminoglycans from Jinjiang oyster Crassostrea rivularis[J]. Modern Food Science and Technology, 30(12): 16-24. (in Chinese with English abstract) | |
[4] | 李婉, 曹文红, 章超桦, 等, 2017. 牡蛎酶解产物的组成特点及其体外免疫活性[J]. 食品工业科技, 38(16): 35-42. |
LI WAN, CAO WENHONG, ZHANG CHAOHUA, et al, 2017. Composition characteristics of oyster enzymatic hydrolysate and its immune activity in vitro[J]. Science and Technology of Food Industry, 38(16): 35-42. (in Chinese with English abstract) | |
[5] |
巫楚君, 潘剑宇, 蔡冰娜, 等, 2021. 黄鳍金枪鱼酶解物免疫活性及其氨基酸分析[J]. 热带海洋学报, 40(6): 128-134.
doi: 10.11978/2020136 |
WU CHUJUN, PAN JIANYU, CAI BINGNA, et al, 2021. Immunoactivity and amino acid analysis of enzymatic hydrolysates of Thunnus albacares[J]. Journal of Tropical Oceanography, 40(6): 128-134. (in Chinese with English abstract) | |
[6] | 武美彤, 张海欣, 张梦, 等, 2020. 牡蛎酶解物对Lewis肺癌的抑制作用及机制[J]. 食品与发酵工业, 46(11): 98-104, 111. |
WU MEITONG, ZHANG HAIXIN, ZHANG MENG, et al, 2020. Inhibition and mechanism of oyster enzymatic hydrolysate on Lewis lung cancer[J]. Food and Fermentation Industries, 46(11): 98-104, 111. (in Chinese with English abstract) | |
[7] |
吴园涛, 任小波, 孙恢礼, 2012. 关于我国海洋生物资源领域科技布局的若干思考[J]. 热带海洋学报, 31(1): 79-84.
doi: 10.11978/j.issn.1009-5470.2012.01.079 |
WU YUANTAO, REN XIAOBO, SUN HUILI, 2012. Thoughts on science and technology layout of marine biological resources research in China[J]. Journal of Tropical Oceanography, 31(1): 79-84. (in Chinese with English abstract) | |
[8] | 许东晖, 许实波, 王兵, 等, 1999. 皱纹盘鲍多糖抗肿瘤药理作用研究[J]. 热带海洋学报, 18(4): 86-90. |
XU DONGHUI, XU SHIBO, WANG BING, et al, 1999. A study on anti-tumor effects of abalone polysaccharide (AP) from haliotis discus hannai ino[J]. Tropic Oceanology, 18(4): 86-90. (in Chinese with English abstract) | |
[9] | 姚望, 张鑫杰, 姚庆华, 2019. 胃肠道恶性肿瘤化疗患者早期肠内营养干预的临床研究[J]. 中国肿瘤临床, 46(15): 780-784. |
YAO WANG, ZHANG XINJIE, YAO QINGHUA, 2019. Clinical study of the effect of early enteral nutrition intervention in patients with gastrointestinal malignant tumors undergoing chemotherapy[J]. Chinese Journal of Clinical Oncology, 46(15): 780-784. (in Chinese with English abstract) | |
[10] | 赵强, 魏祥玲, 孙建安, 等, 2021. 牡蛎资源的综合开发利用研究进展[J]. 中国食品添加剂, 32(7): 150-159. |
ZHAO QIANG, WEI XIANGLING, SUN JIANAN, et al, 2021. Research progress on comprehensive utilization of oyster resources[J]. China Food Additives, 32(7): 150-159. (in Chinese with English abstract) | |
[11] | 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局, 2016. 食品安全国家标准食品中氨基酸的测定 GB 5009.6-2016[S]. 北京: 中国标准出版社. |
NATIONAL HEALTH AND FAMILY PLANNING COMMISSION OF THE PEOPLE’S REPUBLIC OF CHINA, STATE FOOD AND DRUG ADMINISTRATION, 2016. National Food Safety Standards Determination of Amino Acids in Foods GB 5009.124-2016[S]. Beijing: Standards Press of China. (in Chinese with English abstract) | |
[12] |
BALMANT B D, ARAÚJO E O N, YABUKI D, et al, 2018. Effects of L-Arginine supplementation on leukogram, inflammatory bowel infiltrates and immunoglobulins with 5-FU use in rats[J]. Nutrition and Cancer, 70(2): 249-256.
doi: 10.1080/01635581.2018.1424346 |
[13] | CAI BINGNA, CHEN HUA, SUN HAN, et al, 2016. Production of immunoregulatory polysaccharides from Crassostrea hongkongensis and their positive effects as a nutrition factor in modulating the effectiveness and toxicity of 5-FU chemotherapy in mice[J]. Food & Function, 7(1): 390-397. |
[14] |
CAI BINGNA, PAN JIANYU, CHEN HUA, et al, 2021. Oyster polysaccharides ameliorate intestinal mucositis and improve metabolism in 5-fluorouracil-treated S180 tumour-bearing mice[J]. Carbohydrate Polymers, 256: 117545.
doi: 10.1016/j.carbpol.2020.117545 |
[15] |
CHEONG S H, KIM E-K, HWANG J-W, et al, 2013. Purification of a novel peptide derived from a shellfish, Crassostrea gigas, and evaluation of its anticancer property[J]. Journal of Agricultural and Food Chemistry, 61(47): 11442-11446.
doi: 10.1021/jf4032553 |
[16] |
COËFFIER M, CLAEYSSENS S, BENSIFI M, et al, 2011. Influence of leucine on protein metabolism, phosphokinase expression, and cell proliferation in human duodenum[J]. The American Journal of Clinical Nutrition, 93(6): 1255-1262.
doi: 10.3945/ajcn.111.013649 |
[17] | COOL J C, DYER J L, XIAN C J, et al, 2005. Pre-treatment with insulin-like growth factor-Ⅰ partially ameliorates 5-fluorouracil-induced intestinal mucositis in rats[J]. Growth Hormone & IGF Research, 15(1): 72-82. |
[18] |
CORREIA-DA-SILVA M, SOUSA E, PINTO M M M, et al, 2017. Anticancer and cancer preventive compounds from edible marine organisms[J]. Seminars in Cancer Biology, 46: 55-64.
doi: 10.1016/j.semcancer.2017.03.011 |
[19] |
DE JESUS L C L, DRUMOND M M, DE CARVALHO A, et al, 2019. Protective effect of Lactobacillus delbrueckii subsp. Lactis CIDCA 133 in a model of 5 fluorouracil-induced intestinal mucositis[J]. Journal of Functional Foods, 53: 197-207.
doi: 10.1016/j.jff.2018.12.027 |
[20] |
GAO YUE, XIAO XIANGSHENG, ZHANG CHANGLIN, et al, 2017. Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K / AKT and NF-κB / iNOS signaling pathways[J]. Journal of Pineal Research, 62(2): e12380.
doi: 10.1111/jpi.12380 |
[21] | HAMOUDA N, SANO T, OIKAWA Y, et al, 2017. Apoptosis, dysbiosis and expression of inflammatory cytokines are sequential events in the development of 5-fluorouracil- induced intestinal mucositis in mice[J]. Basic & Clinical Pharmacology & Toxicology, 121(3): 159-168. |
[22] |
HAO LILI, WANG XINCEN, CAO YUNRUI, et al, 2022. A comprehensive review of oyster peptides: preparation, characterisation and bioactivities[J]. Reviews in Aquaculture, 14(1): 120-138.
doi: 10.1111/raq.12588 |
[23] | HE FANG, WU CHENLU, LI PAN, et al, 2018. Functions and signaling pathways of amino acids in intestinal inflammation[J]. Biomed Research International, 2018: 9171905. |
[24] | JIN QIGUAN, ZHOU MING, HU YULONG, et al, 2021. Inhibitory effect and mechanism of oyster enzymatic hydrolysate on lung metastasis in the subcutaneous Lewis lung cancer model in mice[J]. Kafkas Universitesi Veteriner Fakultesi Dergisi, 27(1): 73-82. |
[25] |
KATO S, HAYASHI S, KITAHARA Y, et al, 2015. Saireito (TJ-114), a Japanese traditional herbal medicine, reduces 5-fluorouracil-induced intestinal mucositis in mice by inhibiting cytokine-mediated apoptosis in intestinal crypt cells[J]. PLoS One, 10(1): e0116213.
doi: 10.1371/journal.pone.0116213 |
[26] |
LEVIT R, SAVOY DE GIORI G, DE MORENO DE LEBLANC A, et al, 2021. Evaluation of vitamin-producing and immunomodulatory lactic acid bacteria as a potential co-adjuvant for cancer therapy in a mouse model[J]. Journal of Applied Microbiology, 130(6): 2063-2074.
doi: 10.1111/jam.14918 pmid: 33128836 |
[27] |
LI WAN, XU CHENG, ZHANG CHAOHUA, et al, 2019. The purification and identification of immunoregulatory peptides from oyster (Crassostrea hongkongensis) enzymatic hydrolysate[J]. RSC Advances, 9(56): 32854-32863.
doi: 10.1039/C9RA04255E |
[28] |
PAN JIANYU, WAN PENG, CHEN DEKE, et al, 2019. Purification and identification of intestinal mucosal cell proliferation-promoting peptides from Crassostrea hongkongensis[J]. European Food Research and Technology, 245(3): 631-642.
doi: 10.1007/s00217-018-3186-1 |
[29] |
SINGH K, GOBERT A P, COBURN L A, et al, 2019. Dietary arginine regulates severity of experimental colitis and affects the colonic microbiome[J]. Frontiers in Cellular and Infection Microbiology, 9: 66.
doi: 10.3389/fcimb.2019.00066 pmid: 30972302 |
[30] |
SOUGIANNIS A T, VANDERVEEN B N, ENOS R T, et al, 2019. Impact of 5 fluorouracil chemotherapy on gut inflammation, functional parameters, and gut microbiota[J]. Brain, Behavior, and Immunity, 80: 44-55.
doi: S0889-1591(18)31227-3 pmid: 30807838 |
[31] |
TAN KARSOON, MA HONGYU, LI SHENGKANG, et al, 2020. Bivalves as future source of sustainable natural omega-3 polyunsaturated fatty acids[J]. Food Chemistry, 311: 125907.
doi: 10.1016/j.foodchem.2019.125907 |
[32] | TOMÉ D, 2018. The roles of dietary glutamate in the intestine[J]. Annals of Nutrition and Metabolism, 73(S5): 15-20. |
[33] |
VENUGOPAL V, GOPAKUMAR K, 2017. Shellfish: nutritive value, health benefits, and consumer safety[J]. Comprehensive Reviews in Food Science and Food Safety, 16(6): 1219-1242.
doi: 10.1111/1541-4337.12312 |
[34] |
VIEIRA DE BARROS P A, RABELO ANDRADE M E, DE VASCONCELOS GENEROSO S, et al, 2018. Conjugated linoleic acid prevents damage caused by intestinal mucositis induced by 5-fluorouracil in an experimental model[J]. Biomedicine & Pharmacotherapy, 103: 1567-1576.
doi: 10.1016/j.biopha.2018.04.133 |
[35] |
WANG HAIBO, LIU YULAN, SHI HAIFENG, et al. 2017. Aspartate attenuates intestinal injury and inhibits TLR4 and NODs / NF-κB and p38 signaling in weaned pigs after LPS challenge[J]. European Journal of Nutrition, 56(4): 1433-1443.
doi: 10.1007/s00394-016-1189-x |
[36] |
WANG LIANG, SONG BAOHUI, HU YAN, et al, 2021. Puerarin ameliorates 5-fluorouracil-induced intestinal mucositis in mice by inhibiting JAKs[J]. Journal of Pharmacology and Experimental Therapeutics, 379(2): 147-155.
doi: 10.1124/jpet.121.000677 pmid: 34400527 |
[37] |
WANG YUKAI, HE HAILUN, WANG GUOFAN, et al, 2010. Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB / c mice[J]. Marine Drugs, 8(2): 255-268.
doi: 10.3390/md8020255 |
[38] |
WANG ZHENGHUI, WU BAOJUN, ZHANG XIANGHONG, et al, 2012. Purification of a polysaccharide from Boschniakia rossica and its synergistic antitumor effect combined with 5-fluorouracil[J]. Carbohydrate Polymers, 89(1): 31-35.
doi: 10.1016/j.carbpol.2012.02.024 |
[39] |
XIA MI, YE LULU, HOU QIHANG, et al, 2016. Effects of arginine on intestinal epithelial cell integrity and nutrient uptake[J]. British Journal of Nutrition, 116(10): 1675-1681.
doi: 10.1017/S000711451600386X |
[40] |
XIANG DAOCHUN, YANG JINYU, XU YANJIAO, et al, 2020. Protective effect of Andrographolide on 5-Fu induced intestinal mucositis by regulating p38 MAPK signaling pathway[J]. Life Sciences, 252: 117612.
doi: 10.1016/j.lfs.2020.117612 |
[41] | XIE CHENGLIANG, KANG SANGSOO, LU CIYONG, et al, 2018. Quantification of multifunctional dipeptide YA from oyster hydrolysate for quality control and efficacy evaluation[J]. Biomed Research International, 2018: 8437379. |
[42] |
YAN XIAOXIA, LI HAILONG, ZHANG YITING, et al, 2020. A new recombinant MS-superoxide dismutase alleviates 5-fluorouracil-induced intestinal mucositis in mice[J]. Acta Pharmacologica Sinica, 41(3): 348-357.
doi: 10.1038/s41401-019-0295-8 |
[43] |
YIM S K, KIM K M, LEE C H, et al, 2021. The superoxide dismutase mimetic M40403, improves 5-fluorouracil-induced small intestinal mucositis in a mouse model[J]. In Vivo, 35(3): 1485-1497.
doi: 10.21873/invivo.12401 pmid: 33910826 |
[44] |
ZEESHAN M, ATIQ A, UL AIN Q, et al, 2021. Evaluating the mucoprotective effects of glycyrrhizic acid-loaded polymeric nanoparticles in a murine model of 5-fluorouracil-induced intestinal mucositis via suppression of inflammatory mediators and oxidative stress[J]. Inflammopharmacology, 29(5): 1539-1553.
doi: 10.1007/s10787-021-00866-z pmid: 34420176 |
[45] | ZHANG PAN, LAI ZELIN, CHEN HUIFEN, et al, 2017. Curcumin synergizes with 5-fluorouracil by impairing AMPK / ULK1-dependent autophagy, AKT activity and enhancing apoptosis in colon cancer cells with tumor growth inhibition in xenograft mice[J]. Journal of Experimental & Clinical Cancer Research, 36(1): 190. |
[46] |
ZHANG YUNCHANG, MU TIANQI, JIA HAI, et al, 2021. Protective effects of glycine against lipopolysaccharide- induced intestinal apoptosis and inflammation[J]. Amino Acids, 54(3): 353-364.
doi: 10.1007/s00726-021-03011-w |
[47] |
ZHENG HONG, GAO JING, MAN SHULI, et al, 2019. The protective effects of Aquilariae Lignum Resinatum extract on 5-fuorouracil-induced intestinal mucositis in mice[J]. Phytomedicine, 54: 308-317.
doi: 10.1016/j.phymed.2018.07.006 |
[48] |
ZHENG JINLING, ZHANG TINGTING, FAN JIAN, et al, 2021. Protective effects of a polysaccharide from Boletus aereus on S180 tumor-bearing mice and its structural characteristics[J]. International Journal of Biological Macromolecules, 188: 1-10.
doi: 10.1016/j.ijbiomac.2021.07.191 |
[1] | WEI Xue, QIN Xiaoming, CHEN Suhua, ZHANG Kaijia, LIN Haisheng, ZHENG Huina, GAO Jialong. Study on the effect of Oyster hydrolysates on improving Lactation function in Postpartum hypogalactism [J]. Journal of Tropical Oceanography, 2023, 42(2): 141-152. |
|