[1] |
胡凯凯, 尹加文, 麦裕良, 等, 2021. 高精度海洋温/盐/酸度集成微纳传感器制造与测试[J]. 传感器与微系统, 40(1): 74-77.
|
|
HU KAIKAI, YIN JIAWEN, MAI YULIANG, et al, 2021. Fabrication and testing of high precision oceanic temperature/salinity/acidity integrated micro-/nano-sensors[J]. Transducer and Microsystem Technologies, 40(1): 74-77 (in Chinese with English abstract).
|
[2] |
练继建, 燕翔, 刘昉, 2018. 流致振动能量利用的研究现状与展望[J]. 南水北调与水利科技, 168(1): 176-188.
|
|
LIAN JIJIAN, YAN XIANG, LIU FANG, 2018. Development and prospect of study on the energy harness of flow-induced motion[J]. South-to-North Water Transfers and Water Science & Technology, 168(1): 176-188 (in Chinese with English abstract).
|
[3] |
宋保维, 丁文俊, 毛昭勇, 2012. 基于波浪能的海洋浮标发电系统[J]. 机械工程学报, 48(12): 139-143.
|
|
SONG BAOWEI, DING WENJUN, MAO ZHAOYONG, et al, 2012. Conversion system of ocean buoys based on wave energy[J]. Journal of Mechanical Engineering, 48(12): 139-143 (in Chinese with English abstract).
|
[4] |
AHMED A, HASSAN I, HEDAYA M, et al, 2017. Farms of triboelectric nanogenerators for harvesting wind energy: A potential approach towards green energy[J]. Nano Energy, 36: 21-29.
doi: 10.1016/j.nanoen.2017.03.046
|
[5] |
CHEN JUN, WANG ZHONGLIN, 2017. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator[J]. Joule, 1(3): 480-521.
doi: 10.1016/j.joule.2017.09.004
|
[6] |
FALCÃO A F O, HENRIQUES J C C, 2016. Oscillating-water-column wave energy converters and air turbines: A review[J]. Renewable Energy, 85: 1391-1424.
doi: 10.1016/j.renene.2015.07.086
|
[7] |
FAN FENG-RU, TANG WEI, YAO YAN, et al, 2014. Complementary power output characteristics of electromagnetic generators and triboelectric generators[J]. Nanotechnology, 25(13): 135402.
doi: 10.1088/0957-4484/25/13/135402
|
[8] |
FAN FENG-RU, TIAN ZHONG-QUN, WANG ZHONGLIN, 2012. Flexible triboelectric generator[J]. Nano Energy, 1(2): 328-334.
doi: 10.1016/j.nanoen.2012.01.004
|
[9] |
HAN JIAJIA, FENG YAWEI, CHEN PENGFEI, et al, 2022. Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming[J]. Advanced Functional Materials, 32(2): 2108580.
|
[10] |
JURADO U T, PU S H, WHITE N M, 2019. Dielectric-metal triboelectric nanogenerators for ocean wave impact self-powered applications[J]. IEEE Sensors Journal, 19(16): 6778-6785.
doi: 10.1109/JSEN.7361
|
[11] |
JURADO U T, PU S H, WHITE N M, 2020. Wave impact energy harvesting through water-dielectric triboelectrification with single-electrode triboelectric nanogenerators for battery-less systems[J]. Nano Energy, 78: 105204.
doi: 10.1016/j.nanoen.2020.105204
|
[12] |
LÓPEZ I, ANDREU J, CEBALLOS S, et al, 2013. Review of wave energy technologies and the necessary power-equipment[J]. Renewable and Sustainable Energy Reviews, 27: 413-434.
doi: 10.1016/j.rser.2013.07.009
|
[13] |
QU ZHIGANG, HUANG MINGKUN, CHAN CHUANXIAN, et al, 2022. Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting[J]. Advanced Functional Materials, 32(29): 2202048.
doi: 10.1002/adfm.v32.29
|
[14] |
SRIPADMANABHAN INDIRA S, ARAVIND VAITHILINGAM C, ORUGANTI K S P, et al, 2019. Nanogenerators as a sustainable power source: state of art, applications, and challenges[J]. Nanomaterials, 9(5): 773.
doi: 10.3390/nano9050773
|
[15] |
SUN XIN, SHANG CHENJING, MA HAOXIANG, et al, 2022a. A tube-shaped solid-liquid-interfaced triboelectric-electromagnetic hybrid nanogenerator for efficient ocean wave energy harvesting[J]. Nano Energy, 100: 107540.
doi: 10.1016/j.nanoen.2022.107540
|
[16] |
SUN YANGGUI, ZHENG FANGYAN, WEI XUELIAN, et al, 2022b. Pendular-translational hybrid nanogenerator harvesting water wave energy[J]. ACS Applied Materials & Interfaces, 14(13): 15187-15194.
|
[17] |
WANG ZHONGLIN, JIANG TAO, XU LIANG, 2017. Toward the blue energy dream by triboelectric nanogenerator networks[J]. Nano Energy, 39: 9-23.
doi: 10.1016/j.nanoen.2017.06.035
|
[18] |
WANG ZHONGXIN, LIU XU, YUE MENGYUE, et al, 2022. Hybridized energy harvesting device based on high-performance triboelectric nanogenerator for smart agriculture applications[J]. Nano Energy, 102: 107681.
doi: 10.1016/j.nanoen.2022.107681
|
[19] |
WEI XUELIAN, ZHAO ZHIHAO, ZHANG CHUNGUO, et al, 2021. All-weather droplet-based triboelectric nanogenerator for wave energy harvesting[J]. ACS Nano, 15(8): 13200-13208.
doi: 10.1021/acsnano.1c02790
pmid: 34327988
|
[20] |
XU MINYI, WANG PEIHONG, WANG YI-CHENG, et al, 2018. A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self-powered vibration sensing[J]. Advanced Energy Materials, 8(9): 1702432.
doi: 10.1002/aenm.v8.9
|
[21] |
YANG JIN, CHEN JUN, YANG YA, et al, 2014. Broadband vibrational energy harvesting based on a triboelectric nanogenerator[J]. Advanced Energy Materials, 4(6): 1301322.
doi: 10.1002/aenm.201301322
|
[22] |
YANG YANG, DING SU, ARAKI T, et al, 2016. Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light[J]. Nano Research, 9(2): 401-414.
doi: 10.1007/s12274-015-0921-9
|
[23] |
YANG YANG, DENG ZHIQUN D, 2019. Stretchable sensors for environmental monitoring[J]. Applied Physics Reviews, 6(1): 011309.
doi: 10.1063/1.5085013
|
[24] |
YANG YANG, ELSINGHORST R, MARTINEZ J J, et al, 2022. A real-time underwater acoustic telemetry receiver with edge computing for studying fish behavior and environmental sensing[J]. IEEE Internet of Things Journal, 9(18): 17821-17831.
doi: 10.1109/JIOT.2022.3164092
|
[25] |
YANG YANG, LU JUN, PFLUGRATH B D, et al, 2021a. Lab-on-a-fish: wireless, miniaturized, fully integrated, implantable biotelemetric tag for real-time in vivo monitoring of aquatic animals[J]. IEEE Internet of Things Journal, 9(13): 10751-10762.
doi: 10.1109/JIOT.2021.3126614
|
[26] |
YANG YANG, PLOVIE B, CHIESURA G, et al, 2021b. Fully integrated flexible dielectric monitoring sensor system for real-time in situ prediction of the degree of cure and glass transition temperature of an epoxy resin[J]. IEEE Transactions on Instrumentation and Measurement, 70: 1-9.
|
[27] |
YONG SHUN, WANG JIYU, YANG LIJUN, et al, 2021. Auto-switching self-powered system for efficient broad-band wind energy harvesting based on dual-rotation shaft triboelectric nanogenerator[J]. Advanced Energy Materials, 11(26): 2101194.
|
[28] |
ZHANG JIANJUN, SUN YANSHUO, YANG JIN, et al, 2021a. Irregular wind energy harvesting by a turbine vent triboelectric nanogenerator and its application in a self-powered on-site industrial monitoring system[J]. ACS Applied Materials & Interfaces, 13(46): 55136-55144.
|
[29] |
ZHANG XUEMEI, HU JIE, YANG QIANXI, et al, 2021b. Harvesting multidirectional breeze energy and self-powered intelligent fire detection systems based on triboelectric nanogenerator and fluid-dynamic modeling[J]. Advanced Functional Materials, 31(50): 2106527.
doi: 10.1002/adfm.v31.50
|
[30] |
ZHU GUANG, PAN CAOFENG, GUO WENXI, et al, 2012. Triboelectric-generator-driven pulse electrodeposition for micropatterning[J]. Nano Letters, 12(9): 4960-4965.
doi: 10.1021/nl302560k
pmid: 22889363
|