[1] |
蔡佳佳, 曾玉明, 周浩, 等, 2019. 基于人工神经网络的高频雷达风速反演[J]. 海洋学报, 41(11): 150-155.
|
|
CAI JIAJIA, ZENG YUMING, ZHOU HAO, et al, 2019. Wind speed inversion of high frequency radar based on artificial neural network[J]. Haiyang Xuebao, 41(11): 150-155 (in Chinese with English abstract).
|
[2] |
东松林, 岳显昌, 吴雄斌, 等, 2022. 基于深度学习的高频雷达射频干扰自动识别与抑制[J]. 雷达科学与技术, 20(3): 260-271.
|
|
DONG SONGLIN, YUE XIANCHANG, WU XIONGBIN, et al, 2022. Automatic identification and suppression of radio frequency interference of HF radar based on deep learning[J]. Radar Science and Technology, 20(3): 260-271 (in Chinese with English abstract).
|
[3] |
吴雄斌, 张兰, 柳剑飞, 2015. 海洋雷达探测技术综述[J]. 海洋技术学报, 34(3): 8-15.
|
|
WU XIONGBIN, ZHANG LAN, LIU JIANFEI, 2015. Overview of detecting techniques using oceanographic radars[J]. Journal of Ocean Technology, 34(3): 8-15 (in Chinese with English abstract).
|
[4] |
于彩彩, 楚晓亮, 王曙曜, 2024. 基于卷积神经网络的高频地波雷达有效波高反演[J]. 海洋科学进展, 42(1): 126-136.
|
|
YU CAICAI, CHU XIAOLIANG, WANG SHUYAO, 2024. Significant wave height inversion of high frequency surface wave radar based on convolutional neural network[J]. Advances in Marine Science, 42(1): 126-136 (in Chinese with English abstract).
|
[5] |
周东旭, 孙维康, 付海德, 等, 2023. 三种最新全球海潮模型在中国沿海的精度评估[J]. 海洋科学进展, 41(1): 54-63.
|
|
ZHOU DONGXU, SUN WEIKANG, FU HAIDE, et al, 2023. Accuracy assessment of three latest global ocean tide models in coastal areas of China[J]. Advances in Marine Science, 41(1): 54-63 (in Chinese with English abstract).
|
[6] |
BARRICK D E, EVANS M W, WEBER B L, 1977. Ocean surface currents mapped by radar[J]. Science, 198(4313): 138-144.
pmid: 17755343
|
[7] |
CROMBIE D D, 1955. Doppler spectrum of sea echo at 13. 56 Mc. /s[J]. Nature, 175(4459): 681-682.
|
[8] |
CHEN CHANGSHENG, LIU HEDONG, BEARDSLEY R C, 2003. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 20(1): 159-186.
|
[9] |
CHEN CHANGSHENG, HUANG HAOSHENG, BEARDSLEY R C, et al, 2007. A finite volume numerical approach for coastal ocean circulation studies: Comparisons with finite difference models[J]. Journal of Geophysical Research: Oceans, 112(C3): C03018.
|
[10] |
CHEN CHANGSHENG, GAO GUOPING, QI JIANHUA, et al, 2009. A new high-resolution unstructured grid finite volume Arctic Ocean model (AO-FVCOM): an application for tidal studies[J]. Journal of Geophysical Research: Oceans, 114(C8): C08017.
|
[11] |
EGBERT G D, EROFEEVA S Y, 2002. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 19(2): 183-204.
|
[12] |
FUKUSHIMA K, 1980. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 36(4): 193-202.
doi: 10.1007/BF00344251
pmid: 7370364
|
[13] |
GERS F A, SCHMIDHUBER J, CUMMINS F, 2000. Learning to forget: continual prediction with LSTM[J]. Neural Computation, 12(10): 2451-2471.
doi: 10.1162/089976600300015015
pmid: 11032042
|
[14] |
HOCHREITER S, SCHMIDHUBER J, 1997. Long short-term memory[J]. Neural Computation, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735
pmid: 9377276
|
[15] |
LECUN Y, BOTTOU L, BENGIO Y, et al, 1998. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86(11): 2278-2324.
|
[16] |
LIU YONGGANG, WEISBERG R H, MERZ C R, et al, 2010. HF radar performance in a low-energy environment: CODAR SeaSonde experience on the west Florida shelf[J]. Journal of Atmospheric and Oceanic Technology, 27(10): 1689-1710.
|
[17] |
PADUAN J D, WASHBURN L, 2013. High-frequency radar observations of ocean surface currents[J]. Annual Review of Marine Science, 5: 115-136.
doi: 10.1146/annurev-marine-121211-172315
pmid: 22809196
|
[18] |
PEI JIFANG, YANG YU, WU ZEBIAO, et al, 2022. A sea clutter suppression method based on machine learning approach for marine surveillance radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15: 3120-3130.
|
[19] |
REN LEI, HU ZHAN, HARTNETT M, 2018. Short-term forecasting of coastal surface currents using high frequency radar data and artificial neural networks[J]. Remote Sensing, 10(6): 850.
|
[20] |
SUN WEIKANG, ZHOU XINGHUA, ZHOU DONGXU, et al, 2022. Advances and accuracy assessment of ocean tide models in the Antarctic ocean[J]. Frontiers in Earth Science, 10: 757821.
|
[21] |
YANG ZHIQING, LAI YEPING, ZHOU HAO, et al, 2023. Improving ship detection based on decision tree classification for high frequency surface wave radar[J]. Journal of Marine Science and Engineering, 11(3): 493.
|
[22] |
ZHOU CHUNYE, WEI CHUNLEI, YANG FAN, et al, 2023. A quality control method for high frequency radar data based on machine learning neural networks[J]. Applied Sciences, 13(21): 11826.
|
[23] |
ZHU LANGFENG, LU TIANYI, YANG FAN, et al, 2022. Comparisons of tidal currents in the Pearl River Estuary between high-frequency radar data and model simulations[J]. Applied Sciences, 12(13): 6509.
|
[24] |
ZHU LANGFENG, YANG FAN, YANG YUFAN, et al, 2023. Designing theoretical shipborne ADCP survey trajectories for high-frequency radar based on a machine learning neural network[J]. Applied Sciences, 13(12): 7208.
|