[1] 黄康俊, 滕方振, 沈冰, 等, 2022. 镁同位素示踪表生地质过程的原理及应用[J]. 矿物岩石地球化学通报, 41(2): 213-234. HUANG KANG JUN, TENG FANG ZHEN, SHEN BINGet al, 2022. Tracing Surficial Processes By Magnesium Isotopes[J]. Principles and Applications Bulletin of Mineralogy, Petrology and Geochemistry, 41(2): 213-235 (in Chinese with English abstract). [2] 李建忠, 陶小晚, 白斌, 等, 2021. 中国海相超深层油气地质条件、成藏演化及有利勘探方向[J]. 石油勘探与开发, 48(1): 52-67. LI JIANZHONG, TAO XIAOWAN, BAI BIN, et al, 2021. Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China[J]. Petroleum Exploration and Development, 48(1): 52-67 (in Chinese with English abstract). [3] 李波, 颜佳新, 刘喜停, 等, 2010. 白云岩有机成因模式: 机制、进展与意义[J]. 古地理学报, 12(6): 699-710. LI BO YAN JIAXIN, LIU XITING, et al, 2010. The organogenic dolomite model: Mechanism, process and significance[J]. Journal of Palaeogeography, 12(6): 699-710 (in Chinese with English abstract). [4] 罗云, 黎刚, 徐维海, 等, 2022. 南科1井第四系暴露面特征及其与海平面变化的关系[J]. 热带海洋学报, 41(1): 143-157. LUO YUN, LI GANG, XU WEIHAI, et al, 2022. Characteristics of Quaternary exposure surfaces in Well Nanke 1 and its relationship with sea level changes[J]. Journal of Tropical Oceanography, 41(1): 143-157 (in Chinese with English abstract). [5] 马永生, 郭彤楼, 赵雪凤, 等, 2007. 普光气田深部优质白云岩储层形成机制[J]. 中国科学(D辑:地球科学), 37(S2): 43-52 (in Chinese). [6] 梅冥相, 2012. 从3个科学理念简论沉积学中的“白云岩问题”[J]. 古地理学报, 14(1): 1-12. MEI MINGXIANG, 2012. Brief introduction of “dolostone problem” in sedimentology according to three scientific ideas[J]. Journal of Palaeogeography, 14(1): 1-12 (in Chinese with English abstract). [7] 史德锋, 李潇雨, 王亚辉, 等, 2020. 中国南海西沙地区西科1井中新统白云岩中微生物特征及其对白云石化的启示[J]. 矿物岩石, 40(20): 104-113. SHI DEFENG, LI XIAOYU, WANG YAHUI, et al, 2020. Microbial characteristics of Miocene dolomite in well xike-1, Xisha area, South China Sea: implications for dolomitization[J]. Mineralogy and Petrology, 40(20): 104-113 (in Chinese with English abstract). [8] 魏喜, 祝永军, 许红, 等, 2006. 西沙群岛新近纪白云岩形成条件的探讨:C、O同位素和流体包裹体证据[J]. 岩石学报, 22(9): 2394-2404. WEI XI, ZHU HONGJUN, XU HONG,, et al, 2006. Disscussion on Neogene dolostone forming condition in Xisha Islands: evidences from isotope C and O and fluid inclosures[J]. Acta Petrologica Sinica, 22(9): 2394-2404(in Chinese with English abstract). [9] 许红, 张金川, 蔡峰, 1994. 西沙群岛中新世生物礁矿物相研究及其意义[J]. 海洋地质与第四纪地质, 14(4): 15-23. XU HONG, ZHANG JINCHUAN, CAI FENG, 1994. Study and significance of Miocene biohermal mineral facies in the Xisha Islands[J]. Marine Geology & Quaternary Geology, 14(4): 12-23(in Chinese with English abstract). [10] 詹文欢, 钟建强, 刘以宣, 1995. 南沙西南地区新构造运动及其动力学机制[J]. 海洋通报,(6): 53-60. ZHAN WENHUAN, ZHONG JIANQIANG, LIU YIXUAN, 1995. Neotectonic movement and dynamic evolution in southern region of Nansha Islands[J]. Marine Science Bulletin, (6): 53-60(in Chinese with English abstract). [11] ALIBO D S, NOZAKI Y, 2000. Dissolved rare earth elements in the South China Sea: Geochemical characterization of the water masses[J]. Journal of Geophysical Research: Oceans, 105(C12): 28771-28783. [12] AMTHOR J E, FRIEDMAN G M, 1991. Dolomite‐rock textures and secondary porosity development in Ellenburger Group carbonates (Lower Ordovician), west Texas and southeastern New Mexico[J]. Sedimentology, 38(2): 343-362. [13] ARVIDSON R S, MACKENZIE F T, 1999. The dolomite problem; control of precipitation kinetics by temperature and saturation state[J]. American Journal of Science, 299(4): 257-288. [14] ARVIDSON R S, GUIDRY M W, MACKENZIE F T, 2011. Dolomite controls on Phanerozoic seawater chemistry[J]. Aquatic Geochemistry, 17(4): 735-747. [15] BANNER J L, 1995. Application of the trace-element and isotope geochemistry of strontium to studies of carbonate diagenesis[J]. Sedimentology, 42(5): 805-824. [16] BETZLER C, EBERLI G P, 2019. Miocene start of modern carbonate platforms[J]. Geology, 47(8): 771-775. [17] BI D-J, ZHAI S-K, ZHANG D-J, et al, 2018. Constraints of fluid inclusions and C, O isotopic compositions on the origin of the dolomites in the Xisha Islands, South China Sea[J]. Chemical Geology, 493: 504-517. [18] BOLTON A, GOODKIN N F, HUGHEN K, et al, 2014. Paired Porites coral Sr/Ca and δ18O from the western South China Sea: Proxy calibration of sea surface temperature and precipitation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 410: 233-243. [19] BUDD D A, 1997. Cenozoic dolomites of carbonate islands: their attributes and origin[J]. Earth-Science Reviews, 42(1): 1-47. [20] BUDD D A, PARK A J, HOLLIS C, 2019. Bed‐scale spatial patterns in dolomite abundance: Part Ⅱ. Effect of varied fluid chemistry, flow rate, precursor mineralogy, temperature, textural heterogeneity, nucleation density and bed geometry[J]. Sedimentology, 66(7): 2721-2748. [21] BURCHETTE T P, 2012. Carbonate rocks and petroleum reservoirs: a geological perspective from the industry[J]. Geological Society, London, Special Publications, 370(1): 17-37. [22] CROCKFORD P W, KUNZMANN M, BLäTTLER C L, et al, 2021. Reconstructing Neoproterozoic seawater chemistry from early diagenetic dolomite[J]. Geology, 49(4): 442-446. [23] DING W, LI J, DONG C, et al, 2015. Oligocene-Miocene carbonates in the Reed Bank area, South China Sea, and their tectono-sedimentary evolution[J]. Marine Geophysical Research, 36(2): 149-165. [24] DODD M S, SHI W, LI C, et al, 2023. Uncovering the Ediacaran phosphorus cycle[J]. Nature: 1-7. [25] DREVER J I.The geochemistry of natural waters: surface and groundwater environments[M]. Prentice Hall, 1997. [26] ELDERFIELD H, 1986. Strontium isotope stratigraphy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 57(1): 71-90. [27] FAN T, YU K, ZHAO J, et al, 2020. Strontium isotope stratigraphy and paleomagnetic age constraints on the evolution history of coral reef islands, northern South China Sea[J]. Geological Society of America Bulletin, 132(3-4): 803-816. [28] GREGG J M, BISH D L, KACZMAREK S E, et al, 2015. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review[J]. Sedimentology, 62(6): 1749-1769. [29] GUO Y, DENG W, LIU X, et al, 2021. Clumped isotope geochemistry of island carbonates in the South China Sea: Implications for early diagenesis and dolomitization[J]. Marine Geology, 437: 106513-106526. [30] HUTCHISON C S, VIJAYAN V R, 2010. What are the Spratly Islands?[J]. Journal of Asian Earth Sciences, 39(5): 371-385. [31] JACOBSEN S B, KAUFMAN A J, 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater[J]. Chemical Geology, 161(1): 37-57. [32] JONES B, LUTH R W, MACNEIL A J, 2001. Powder X-ray diffraction analysis of homogeneous and heterogeneous sedimentary dolostones[J]. Journal of Sedimentary Research, 71(5): 790-799. [33] JONES B, LUTH R W, 2003. Temporal evolution of Tertiary dolostones on Grand Cayman as determined by 87Sr/86Sr[J]. Journal of Sedimentary Research, 73(2): 187-205. [34] KACZMAREK S E, SIBLEY D F, 2011. On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments: an alternative model for the geochemical evolution of natural dolomites[J]. Sedimentary Geology, 240(1-2): 30-40. [35] KACZMAREK S E, THORNTON B P, 2017. The effect of temperature on stoichiometry, cation ordering, and reaction rate in high-temperature dolomitization experiments[J]. Chemical Geology, 468: 32-41. [36] LAND L, 1989. The carbon and oxygen isotopic chemistry of surficial Holocene shallow marine carbonate sediment and Quaternary limestone and dolomite[J]. Handbook of environmental isotope geochemistry, 3: 191-217. [37] LAND L S, 1985. The origin of massive dolomite[J]. Journal of Geological Education, 33(2): 112-125. [38] LAND L S, 1998. Failure to precipitate dolomite at 25 degrees C from dilute solution despite 1000-fold oversaturation after 32 years[J]. Aquatic Geochemistry, 4(3-4): 361-368. [39] LI G, XU W, LUO Y, et al, 2023. Strontium isotope stratigraphy and LA-ICP-MS U-Pb carbonate age constraints on the Cenozoic tectonic evolution of the southern South China Sea[J]. GSA Bulletin, 135(1-2): 271-285. [40] LIU J, CAO L, XU W, et al, 2022. Formation and development of coral reefs in the South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 594: 110957-110968. [41] LOHMANN K C.Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst[M] paleokarst:Springer, 1988: 58-80. [42] LUCIA F, MAJOR R, 1994. Porosity evolution through hypersaline reflux dolomitization[J]. Dolomites: A volume in honour of Dolomieu: 325-341. [43] LUO Y, LI G, XU W, et al, 2021. The effect of diagenesis on rare earth element geochemistry of the Quaternary carbonates at an isolated coral atoll in the South China Sea[J]. Sedimentary Geology, 420: 1-13. [44] MCARTHUR J M, HOWARTH R J, SHIELDS G A, et al.Strontium Isotope Stratigraphy[M] Geologic Time Scale 2020, 2020: 211-238. [45] MIAO X, HUANG X, YAN W, et al, 2021. Late Triassic dacites from Well NK-1 in the Nansha Block: Constraints on the Mesozoic tectonic evolution of the southern South China Sea margin[J]. Lithos, 398-399: 106337-106349. [46] MILLER K G, BROWNING J V, SCHMELZ W J, et al, 2020. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science advances, 6(20): eaaz1346. [47] MORROW D, 1982. The chemistry of dolomitization and dolomite precipitation[J]. Geoscience Canada, 9(1): 5-13. [48] MUELLER M, IGBOKWE O A, WALTER B, et al, 2020. Testing the preservation potential of early diagenetic dolomites as geochemical archives[J]. Sedimentology, 67(2): 849-881. [49] MURRAY S T, SWART P K, 2017. Evaluating formation fluid models and calibrations using clumped isotope paleothermometry on Bahamian dolomites[J]. Geochimica et Cosmochimica Acta, 206: 73-93. [50] NASH M, TROITZSCH U, OPDYKE B, et al, 2011. First discovery of dolomite and magnesite in living coralline algae and its geobiological implications[J]. Biogeosciences, 8(11): 3331-3340. [51] NASH M C, OPDYKE B N, WU Z, et al, 2013. Simple X-ray diffraction techniques to identify Mg calcite, dolomite, and magnesite in tropical coralline algae and assess peak asymmetry[J]. Journal of Sedimentary Research, 83(12): 1085-1099. [52] NELSON L L, AHM A-S C, MACDONALD F A, et al, 2021. Fingerprinting local controls on the Neoproterozoic carbon cycle with the isotopic record of Cryogenian carbonates in the Panamint Range, California[J]. Earth and Planetary Science Letters, 566: 116956-116969. [53] NING M, LANG X, HUANG K, et al, 2020. Towards understanding the origin of massive dolostones[J]. Earth and Planetary Science Letters, 545. [54] OHDE S, ELDERFIELD H, 1992. Strontium isotope stratigraphy of Kita-daito-jima Atoll, North Philippine Sea: implications for Neogene sea-level change and tectonic history[J]. Earth and Planetary Science Letters, 113(4): 473-486. [55] RAO N D, AL-IMAM O, BEHAIRY A, 1987. Early mixed-water dolomitization in the Pleistocene reef limestones, west coast of Saudi Arabia[J]. Sedimentary Geology, 53(3-4): 231-245. [56] REN M, JONES B, 2017. Spatial variations in the stoichiometry and geochemistry of Miocene dolomite from Grand Cayman: Implications for the origin of island dolostone[J]. Sedimentary Geology, 348: 69-93. [57] REN M, JONES B, PUFAHL P, 2018. Genesis of island dolostones[J]. Sedimentology, 65(6): 2003-2033. [58] SALLER A H, 1984. Petrologic and geochemical constraints on the origin of subsurface dolomite, Enewetak Atoll: an example of dolomitization by normal seawater[J]. Geology, 12(4): 217-220. [59] SAUNDERS M I, ALBERT S, ROELFSEMA C M, et al, 2016. Tectonic subsidence provides insight into possible coral reef futures under rapid sea-level rise[J]. Coral Reefs, 35: 155-167. [60] SHAO L, CUI Y, QIAO P, et al, 2017. Sea-level changes and carbonate platform evolution of the Xisha Islands (South China Sea) since the Early Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 485(Supplement C): 504-516. [61] SHEN A, HU A, TING C, et al, 2019. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 46(6): 1127-1140. [62] SIBLEY D F, GREGG J M, 1987. Classification of dolomite rock textures[J]. Journal of Sedimentary Research, 57(6): 967-975. [63] SIBLEY D F, 1990. Unstable to stable transformations during dolomitization[J]. The Journal of Geology, 98(5): 739-748. [64] SIBLEY D F, 1991. Secular changes in the amount and texture of dolomite[J]. Geology, 19(2): 151-154. [65] SMITH M E, SWART P K, 2022. The influence of diagenesis on carbon and oxygen isotope values in shallow water carbonates from the Atlantic and Pacific: Implications for the interpretation of the global carbon cycle[J]. Sedimentary Geology, 434: 106147-106159. [66] STEUER S, FRANKE D, MERESSE F, et al, 2014. Oligocene-Miocene carbonates and their role for constraining the rifting and collision history of the Dangerous Grounds, South China Sea[J]. Marine and Petroleum Geology, 58, Part B: 644-657. [67] SUZUKI Y, IRYU Y, INAGAKI S, et al, 2006. Origin of atoll dolomites distinguished by geochemistry and crystal chemistry: Kita-daito-jima, northern Philippine Sea[J]. Sedimentary Geology, 183(3): 181-202. [68] SWART PETER K, 2015. The geochemistry of carbonate diagenesis: The past, present and future[J]. Sedimentology, 62(5): 1233-1304. [69] SWART P K, KENNEDY M J, 2012. Does the global stratigraphic reproducibility of δ13C in Neoproterozoic carbonates require a marine origin? A Pliocene-Pleistocene comparison[J]. Geology, 40(1): 87-90. [70] TUCKER M E, WRIGHT V P.Carbonate Sedimentology[M]. Oxford: Blackwell Scientific Publications, 1990: 1-496. [71] UZELMAN B C.Sedimentology, diagenesis, and dolomitization of the Brac Formation (Lower Oligocene), Cayman Brac, British West Indies [D]. Canada, Alberta.University of Alberta, 2009. [72] VAHRENKAMP V, SWART P, 1994. Late Cenozoic dolomites of the Bahamas: metastable analogues for the genesis of ancient platform dolomites[J]. Dolomites: A volume in honour of Dolomieu: 133-153. [73] VAHRENKAMP V C, SWART P K, 1990. New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites[J]. Geology, 18(5): 387-391. [74] VAHRENKAMP V C, SWART P K, RUIZ J, 1991. Episodic dolomitization of late Cenozoic carbonates in the Bahamas; evidence from strontium isotopes[J]. Journal of Sedimentary Research, 61(6): 1002-1014. [75] VAN SMEERDIJK HOOD A, WALLACE M W, 2012. Synsedimentary diagenesis in a Cryogenian reef complex: Ubiquitous marine dolomite precipitation[J]. Sedimentary Geology, 255: 56-71. [76] VEIZER J, CLAYTON R, HINTON R, 1992. Geochemistry of Precambrian carbonates: Ⅳ. Early Paleoproterozoic (2.25±0.25 Ga) seawater[J]. Geochimica et Cosmochimica Acta, 56(3): 875-885. [77] WALLACE M W, 1990. Origin of dolomitization on the Barbwire Terrace, Canning Basin, Western Australia[J]. Sedimentology, 37(1): 105-122. [78] WANG R, YU K, JONES B, et al, 2018. Evolution and development of Miocene “island dolostones” on Xisha Islands, South China Sea[J]. Marine Geology, 406: 142-158. [79] WANG R, JONES B, YU K, 2019. Island dolostones: Genesis by time-transgressive or event dolomitization[J]. Sedimentary Geology, 390: 15-30. [80] WANG R, YU K, JONES B, et al, 2021. Dolomitization micro-conditions constraint on dolomite stoichiometry: A case study from the Miocene Huangliu Formation, Xisha Islands, South China Sea[J]. Marine and Petroleum Geology, 133: 1-12. [81] WANG R, XIAO Y, YU K, et al, 2022. Temperature regimes during formation of Miocene island dolostones as determined by clumped isotope thermometry: Xisha Islands, South China Sea[J]. Sedimentary Geology, 429: 1-13. [82] WARD W C, HALLEY R B, 1985. Dolomitization in a mixing zone of near-seawater composition, late Pleistocene, northeastern Yucatan Peninsula[J]. Journal of Sedimentary Research, 55(3): 407-420. [83] WARREN J, 2000. Dolomite: occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 52(1-3): 1-81. [84] WHEELER C W, AHARON P, FERRELL R E, 1999. Successions of Late Cenozoic platform Dolomites distinguished by texture geochemistry, and crystal chemistry: Niue, South Pacific[J]. Journal of Sedimentary Research, 69(1): 239-255. [85] WHITAKER F, SMART P, 1990. Active circulation of saline ground waters in carbonate platforms: evidence from the Great Bahama Bank[J]. Geology, 18(3): 200-203. [86] WHITAKER F F, SMART P L, JONES G D, 2004. Dolomitization: from conceptual to numerical models[J]. Geological Society, London, Special Publications, 235(1): 99-139. [87] WOODROFFE C D, WEBSTER J M, 2014. Coral reefs and sea-level change[J]. Marine Geology, 352: 248-267. [88] WU S, ZHANG X, YANG Z, et al, 2016. Spatial and temporal evolution of Cenozoic carbonate platforms on the continental margins of the South China Sea: Response to opening of the ocean basin[J]. Interpretation, 4(3): SP1-SP19. [89] ZEMPOLICH W G, BAKER P A, 1993. Experimental and natural mimetic dolomitization of aragonite ooids[J]. Journal of Sedimentary Research, 63(4): 596-606. [90] ZHANG F, STOCKEY R G, XIAO S, et al, 2022. Uranium isotope evidence for extensive shallow water anoxia in the early Tonian oceans[J]. Earth and Planetary Science Letters, 583: 117437-117448. [91] ZHAO H, JONES B, 2012. Origin of “island dolostones”: A case study from the Cayman Formation (Miocene), Cayman Brac, British West Indies[J]. Sedimentary Geology, 243-244: 191-206. |