Journal of Tropical Oceanography ›› 2019, Vol. 38 ›› Issue (5): 52-67.doi: 10.11978/2019002CSTR: 32234.14.2019002
• Marine Meteorology • Previous Articles Next Articles
Shuheng LIN1,2,Yuping GUAN1,2,4(),Banglin ZHANG3
Received:
2019-01-01
Revised:
2019-02-27
Online:
2019-09-20
Published:
2019-10-09
Contact:
Yuping GUAN
E-mail:guan@scsio.ac.cn
Supported by:
CLC Number:
Shuheng LIN,Yuping GUAN,Banglin ZHANG. Deficiency of CMIP5 models in simulating changes of Pacific Walker circulation in recent three decades: the role of Sea Surface Temperature *[J].Journal of Tropical Oceanography, 2019, 38(5): 52-67.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Reanalysis datasets used in this study and their detailed information"
数据 | 来源 | 同化方法 | 参考文献 | 时间跨度 | 空间分辨率 | |
---|---|---|---|---|---|---|
水平 | 垂直 | |||||
20CR | NOAA-CIRES | 3D-Var | 1871—现在 | 2°×2° | 24层 | |
ERA-Interim | ECMWF | 4D-Var | 1979—现在 | 1.5°×1.5° | 37层 | |
JRA-55 | JMA | 4D-Var | 1958—现在 | 1.25°×1.25° | 37层 | |
MERRA | NASA | 3D-Var | 1979—现在 | 2/3°×1/2° | 42层 | |
NCEP-1 | NCEP-NCAR | 3D-Var | 1948—现在 | 2.5°×2.5° | 17层 | |
NCEP-2 | NCEP-DOE | 3D-Var | 1979—现在 | 2.5°×2.5° | 17层 |
Tab. 2
Details of 18 CMIP5 models used in this study (Resolutions are given in terms of latitude×longitude grid points)"
序号 | 模式 | 分辨率/(纬度×经度) | 所属机构 |
---|---|---|---|
1 | ACCESS1.0 | 144×192 | 联邦科学与工业研究组织——气象局(澳大利亚) |
2 | ACCESS1.3 | 144×192 | 联邦科学与工业研究组织——气象局(澳大利亚) |
3 | BCC-CSM1.1 | 64×128 | 北京气候中心——中国气象局(中国) |
4 | BCC-CSM1.1(m) | 160×320 | 北京气候中心——中国气象局(中国) |
5 | CCSM4 | 192×288 | 美国国家大气研究中心(美国) |
6 | CMCC-CM | 240×480 | 意大利欧洲-梅迪特拉内奥气候研究中心(意大利) |
7 | CNRM-CM5 | 128×156 | 法国气象局气候变化研究中心(法国) |
8 | CSIRO Mk3.6.0 | 96×192 | 澳大利亚联邦科学和工业研究, 昆士兰气候变化卓越中心(澳大利亚) |
9 | GFDL CM3 | 90×144 | 美国国家海洋和大气管理局地球流体实验室(美国) |
10 | INM-CM4.0 | 120×180 | 俄罗斯数值数学研究所(俄罗斯) |
11 | IPSL-CM5A-LR | 96×96 | 皮埃尔-西蒙-拉普拉斯研究所(法国) |
12 | IPSL-CM5A-MR | 143×144 | 皮埃尔-西蒙-拉普拉斯研究所(法国) |
13 | IPSL-CM5B-LR | 96×96 | 皮埃尔-西蒙-拉普拉斯研究所(法国) |
14 | MIROC5 | 128×256 | 日本气候系统研究中心, 国家环境研究所和前沿气候变化研究中心(日本) |
15 | MPI-ESM-LR | 96×192 | 马克斯普朗克气象研究所(德国) |
16 | MPI-ESM-MR | 96×192 | 马克斯普朗克气象研究所(德国) |
17 | MRI-CGCM3 | 160×320 | 日本气象研究所(日本) |
18 | NorESM1-M | 96×144 | 挪威气候中心(挪威) |
Fig. 1
Linear trends of PWC intensity over the period from 1979 to 2008. (a) AMIP stimulations and six reanalysis datasets; (b) CMIP5 and six reanalysis datasets. Error bars denote standard errors of linear trends. The labels of x-axis are the names of reanalysis data (corresponding to Tab. 1) and CMIP5 models (corresponding to Tab. 2). Positive linear trends of CMIP5 and AMIP simulations satisfying 90% confidence level are highlighted in red and blue, respectively. Linear trends of ensemble mean of reanalysis and models are marked by red triangle and blue dot, respectively"
Fig. 2
Long-term mean (1979-2008) of zonal mass stream function ψ along the equatorial Pacific (5oS—5oN) (a~c, shading and contour; units: ×109 kg·s-1) and long-term mean (1979-2008) of SST in the tropical Pacific Ocean (d~f, shading and contour; units: oC). (a) Ensemble mean of six reanalysis datasets; (b) ensemble mean of AMIP simulations; (c) ensemble mean of CMIP5 simulations; (d) ERSST; (e) HadISST; (f) ensemble mean CMIP5 simulations"
Fig. 3
Taylor diagrams of the climatology of tropical Pacific Walker circulation and SST in 18 CMIP5 models. (a) Tropical Pacific Walker circulation; (b) SST. The REF in (a) is ensemble mean of the six reanalysis datasets and that in (b) is mean of ERSST and HadISST datasets. The radial coordinate is the standard deviation of model results divided by standard deviation of the observations. The angular coordinate is weighted pattern correlation coefficient between model results and observations. The closer the angular and polar values are to 1 (i.e., REF), the closer the spatial distribution of the simulated field is to the observation"
Fig. 4
Climatology (contour, units: ×109 kg·s-1) and linear trend (shading, units: ×109 kg·s-1·decade-1) of zonal mass stream function ψ over 1979-2008. (a) Ensemble mean of six reanalysis datasets (ENS); (b) ensemble mean of 18 AMIP stimulations; (c) CMIP5 (+PWCI) models; (d) CMIP5 (-PWCI) models; (e) AMIP (+CMIP5) stimulations; (f) AMIP (-CMIP5) stimulations. Stippling indicates the trend is statistically significant at the level 95%. Black thick lines at the bottom indicate the Maritime and South American Continent"
Fig. 5
Linear trends of SLP (shading, units: hPa·decade-1), wind at 1000 hPa (vector, units: m·s-1·decade-1) and precipitation (contour, units: mm·d-1·decade-1) during 1979-2008. (a) observation; (b) ensemble mean of 18 AMIP stimulations; (c) CMIP5 (+PWCI) models; (d) CMIP5 (-PWCI) models; (e) AMIP (+CMIP5) stimulations; (f) AMIP (-CMIP5) stimulations. Wind and SLP data are from the ENS and precipitation is from the GPCP in (a). Green solid contour denotes the trend of precipitation is positive, and purple denotes the negative trend. Vectors are plotted only for regions with surface zonal wind trends that are statistically significant at the 95% level. Stippling indicates the trend of SLP is statistically significant at the 95% level"
Fig. 6
Scatterplot of linear trends of SST gradient [$\Delta \text{SST}$, regional mean over (80o—160oW, 5oS—5oN) minus that over (80o—160oE, 5oS—5oN)] and PWC intensity during 1979-2008. The black line denotes the least-squares linear fit of the trend based on 18 CMIP5 models. Black dot denotes the trend of PWC intensity and $\Delta \text{SST}$ in ensemble mean of CMIP5 models, and red dot denotes the trend in the observations"
Fig. 8
Time series of the annual anomalies of SST gradient and PWCI. (a) CMIP5 (+PWCI) models and observation; (b) CMIP5 (-PWCI) models and observation; (c) CMIP5 (+PWCI) models, AMIP (+CMIP5) stimulations and observations; (d) CMIP5 (-PWCI) models, AMIP (-CMIP5) stimulations and observation. The CMIP5 (+PWCI) models include GFDL-CM3, IPSL-CM5A-MR, INMCM4, CSIRO-Mk3-6-0 mode, and CMIP5 (-PWCI) model include MPI-ESM-MR and MIROC5. See Tab. 2 for more details. Red line denotes reversed Niño3.4 index derived from HadISST dataset. ENS denotes ensemble mean of six reanalysis datasets, and observed SST is derived from the mean of ERSST.V4b and HadISST"
Fig. 9
Time series of the nine-year smooth anomalies of SST gradient and PWCI. (a) CMIP5 (+PWCI) models and observation; (b) CMIP5 (-PWCI) models and observation; (c) CMIP5 (+PWCI) models, AMIP (+CMIP5) stimulations and observations; (d) CMIP5 (-PWCI) models, AMIP (-CMIP5) stimulations and observation. The CMIP5 (+PWCI) models include GFDL-CM3, IPSL-CM5A-MR, INMCM4, CSIRO-Mk3-6-0 mode, and CMIP5 (-PWCI) model include MPI-ESM-MR and MIROC5. See Tab. 2 for more details. Red line denotes reversed IPO index derived from HadISST dataset. ENS denotes ensemble mean of six reanalysis datasets, and observed SST is derived from the mean of ERSST.V4b and HadISST"
[1] | 马双梅, 周天军 , 2014. 热带太平洋沃克环流变化的数值模拟[J]. 中国科学: 地球科学, 44(11):2576-2592. |
MA SHUANGMEI, ZHOU TIANJUN , 2014. Changes of the tropical Pacific Walker circulation simulated by two versions of FGOALS model[J]. Science China: Earth Sciences, 57(9):2165-2180. | |
[2] |
孙稚权, 项杰, 管玉平 , 2016. 太平洋沃克环流近几十年来的加强[J]. 热带海洋学报, 35(2):19-29.
doi: 10.11978/2015088 |
SUN ZHIQUAN, XIANG JIE, GUAN YUPING , 2016. Strengthening of the Pacific Walker Circulation in the recent decades[J]. Journal of Tropical Oceanography, 35(2):19-29 (in Chinese with English abstract).
doi: 10.11978/2015088 |
|
[3] | ADLER R F, HUFFMAN G J, CHANG A , et al, 2003. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-Present)[J]. Journal of Hydrometeorology, 4(6):1147-1167. |
[4] | ALLAN R, ANSELL T , 2006. A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2004[J]. Journal of Climate, 19(22):5816-5842. |
[5] | ASHOK K, YAMAGATA T , 2009. The El Niño with a difference[J]. Nature, 461(7263):481-484. |
[6] | BAYR T, DOMMENGET D, MARTIN T , et al, 2014. The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability[J]. Climate Dynamics, 43(9-10):2747-2763. |
[7] | BJERKNES J , 1969. Atmospheric teleconnections from the equatorial pacific[J]. Monthly Weather Review, 97(3):163-172. |
[8] | BORDBAR M H, MARTIN T, LATIF M , et al, 2017. Role of internal variability in recent decadal to multidecadal tropical Pacific climate changes[J]. Geophysical Research Letters, 44(9):4246-4255. |
[9] | CLEMENT A C, SEAGER R, CANE M A , et al, 1996. An ocean dynamical thermostat[J]. Journal of Climate, 9(9):2190-2196. |
[10] | COMPO G P, WHITAKER J S, SARDESHMUKH P D , et al, 2011. The twentieth century reanalysis project[J]. Quarterly Journal of the Royal Meteorological Society, 137(654):1-28. |
[11] | DE BOISSÉSON E, BALMASEDA M A, ABDALLA S , et al, 2014. How robust is the recent strengthening of the Tropical Pacific trade winds?[J]. Geophysical Research Letters, 41(12):4398-4405. |
[12] | DEE D P, UPPALA S M, SIMMONS A J , et al, 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 137(656):553-597. |
[13] | DINEZIO P N, CLEMENT A C, VECCHI G A , et al, 2009. Climate response of the equatorial pacific to global warming[J]. Journal of Climate, 22(18):4873-4892. |
[14] | DINEZIO P N, CLEMENT A C, VECCHI G A , et al, 2010. Reconciling differing views of tropical pacific climate change[J]. Eos Transactions American Geophysical Union, 91(16):141-142. |
[15] | DINEZIO P N, VECCHI G A, CLEMENT A C , 2013. Detectability of changes in the walker circulation in response to global warming[J]. Journal of Climate, 26(12):4038-4048. |
[16] | EBITA A, KOBAYASHI S Y, OTA Y , et al, 2011. The Japanese 55-year reanalysis “JRA-55”: an interim report[J]. Sola, 7:149-152. |
[17] | ENGLAND M H, MCGREGOR S, SPENCE P , et al, 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus[J]. Nature Climate Change, 4(3):222-227. |
[18] | FYFE J C, GILLETT N P, ZWIERS F W , 2013. Overestimated global warming over the past 20 years[J]. Nature Climate Change, 3(9):767-769. |
[19] | GASTINEAU G, LI L, LE TREUT H , 2009. The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations[J]. Journal of Climate, 22(14):3993-4013. |
[20] | HELD I M, SODEN B J , 2006. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 19(21):5686-5699. |
[21] | HUANG BOYIN, BANZON V F, FREEMAN E , et al, 2015. Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I : upgrades and intercomparisons[J]. Journal of Climate, 28(3):911-930. |
[22] | KALNAY E, KANAMITSU M, KISTLER R , et al, 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 77(3):437-472. |
[23] | KANAMITSU M, EBISUZAKI W, WOOLLEN J , et al, 2002. NCEP--DOE AMIP-II reanalysis (R-2)[J]. Bulletin of the American Meteorological Society, 83(11):1631-1643. |
[24] | KIM B H, HA K J , 2018. Changes in equatorial zonal circulations and precipitation in the context of the global warming and natural modes[J]. Climate Dynamics, 51(11-12):3999-4013. |
[25] | KNUTSON T R, MANABE S , 1995. Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean- atmosphere model[J]. Journal of Climate, 8(9):2181-2199. |
[26] | KOCIUBA G, POWER S B , 2015. Inability of CMIP5 models to simulate recent strengthening of the walker circulation: implications for projections[J]. Journal of Climate, 28(1):20-35. |
[27] | KOSAKA Y, XIE SHANGPING , 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 501(7467):403-407. |
[28] | L’HEUREUX M L, LEE S, LYON B , 2013. Recent multidecadal strengthening of the Walker circulation across the tropical Pacific[J]. Nature Climate Change, 3(6):571-576. |
[29] | LIU JIAN, WANG BIN, CANE M A , et al, 2013. Divergent global precipitation changes induced by natural versus anthropogenic forcing[J]. Nature, 493(7434):656-659. |
[30] | LUO JINGJIA, SASAKI W, MASUMOTO Y , 2012. Indian Ocean warming modulates Pacific climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 109(46):18701-18706. |
[31] | MA JIAN, XIE SHANGPING, KOSAKA Y , 2012. Mechanisms for tropical tropospheric circulation change in response to global warming[J]. Journal of Climate, 25(8):2979-2994. |
[32] | MA SHUANGMEI, ZHOU TIANJUN , 2016. Robust Strengthening and westward shift of the tropical Pacific Walker circulation during 1979-2012: a comparison of 7 sets of reanalysis data and 26 CMIP5 models[J]. Journal of Climate, 29(9):3097-3118. |
[33] | MCGREGOR S, TIMMERMANN A, STUECKER M F , et al, 2014. Recent walker circulation strengthening and pacific cooling amplified by Atlantic warming[J]. Nature Climate Change, 4(10):888-892. |
[34] | MEEHL G A, ARBLASTER J M, LOSCHNIGG J , 2003. Coupled ocean-atmosphere dynamical processes in the tropical Indian and Pacific Oceans and the TBO[J]. Journal of Climate, 16(13):2138-2158. |
[35] | MENG QINGJIA, LATIF M, PARK W , et al, 2012. Twentieth century Walker Circulation change: data analysis and model experiments[J]. Climate Dynamics, 38(9-10):1757-1773. |
[36] | MERRIFIELD M A , 2011. A shift in western tropical Pacific sea level trends during the 1990s[J]. Journal of Climate, 24(15):4126-4138. |
[37] | NEWMAN M, COMPO G P, ALEXANDER M A , 2003. ENSO-forced variability of the Pacific decadal oscillation[J]. Journal of Climate, 16(23):3853-3857. |
[38] | OORT A H, YIENGER J J , 1996. Observed interannual variability in the Hadley circulation and its connection to ENSO[J]. Journal of Climate, 9(11):2751-2767. |
[39] | PHILANDER S G , 1990. El Niño, La niña, and the southern oscillation[M]. San Diego: Academic Press: 248. |
[40] | POWER S, CASEY T, FOLLAND C , et al, 1999. Inter-decadal modulation of the impact of ENSO on Australia[J]. Climate Dynamics, 15(5):319-324. |
[41] | POWER S B, SMITH I N , 2007. Weakening of the Walker Circulation and apparent dominance of El Niño both reach record levels, but has ENSO really changed?[J]. Geophysical Research Letters, 34(18):L18702. |
[42] | POWER S B, KOCIUBA G , 2011. What caused the observed twentieth-century weakening of the walker circulation?[J]. Journal of Climate, 24(24):6501-6514. |
[43] | RAYNER N A, PARKER D E, HORTON E B , et al, 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research Atmospheres, 108(D14):4407. |
[44] | REICHLER T, KIM J , 2008. Uncertainties in the climate mean state of global observations, reanalyses, and the GFDL climate model[J]. Journal of Geophysical Research Atmospheres, 113(D5):D05106. |
[45] | RIENECKER M M, SUAREZ M J, GELARO R , et al, 2011. MERRA: NASA’s modern-era retrospective analysis for research and applications[J]. Journal of Climate, 24(14):3624-3648. |
[46] | SAJI N H, GOSWAMI B N, VINAYACHANDRAN P N , et al, 1999. A dipole mode in the tropical Indian ocean[J]. Nature, 401(6751):360-363. |
[47] | SANDEEP S, STORDAL F, SARDESHMUKH P D , et al, 2014. Pacific Walker Circulation variability in coupled and uncoupled climate models[J]. Climate Dynamics, 43(1-2):103-117. |
[48] | SCHWENDIKE J, GOVEKAR P, REEDER M J , et al, 2014. Local partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations[J]. Journal of Geophysical Research Atmospheres, 119:1322-1339. |
[49] | SOHN B J, PARK S C , 2010. Strengthened tropical circulations in past three decades inferred from water vapor transport[J]. Journal of Geophysical Research Atmospheres, 115(D15):1-9. |
[50] | SOHN B J, YEH S W, SCHMETZ J , et al, 2013. Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results[J]. Climate Dynamics, 40(7-8):1721-1732. |
[51] | SOHN B J, LEE S, CHUNG E S , et al, 2016. The role of the dry static stability for the recent change in the Pacific Walker circulation[J]. Journal of Climate, 29(8):2765-2779. |
[52] | SWANSON K L, SUGIHARA G, TSONIS A A , 2009. Long-term natural variability and 20th century climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 106(38):16120-16123. |
[53] | THORNE P W, VOSE R S , 2010. Reanalyses suitable for characterizing long-term trends[J]. Bulletin of the American Meteorological Society, 91(3):353-362. |
[54] | TOKINAGA H, XIE SHANGPING, DESER C , et al, 2012 a. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming[J]. Nature, 491(7424):439-443. |
[55] | TOKINAGA H, XIE SHANGPING, TIMMERMANN A , et al, 2012 b. Regional patterns of tropical indo-pacific climate change: evidence of the walker circulation weakening[J]. Journal of Climate, 25(5):1689-1710. |
[56] | VECCHI G A, SODEN B J, WITTENBERG A T , et al, 2006. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing[J]. Nature, 441(7089):73-76. |
[57] | VECCHI G A, SODEN B J , 2007. Global warming and the weakening of the tropical circulation[J]. Journal of Climate, 20(17):4316-4340. |
[58] | WANG BIN, LIU JIAN, KIM H J , et al, 2012. Recent change of the global monsoon precipitation (1979-2008)[J]. Climate Dynamics, 39(5):1123-1135. |
[59] | WILLIAMS A P, FUNK C , 2011. A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa[J]. Climate Dynamics, 37(11-12):2417-2435. |
[60] | XIE SHANGPING, DESER C, VECCHI G A , et al, 2010. Global warming pattern formation: sea surface temperature and Rainfall[J]. Journal of Climate, 23(4):966-986. |
[61] | YU B, ZWIERS F W, BOER G J , et al, 2012. Structure and variances of equatorial zonal circulation in a multimodel ensemble[J]. Climate Dynamics, 39(9-10):2403-2419. |
[62] | YU BIN, ZWIERS F W , 2010. Changes in equatorial atmospheric zonal circulations in recent decades[J]. Geophysical Research Letters, 37(5):L05701. |
[63] | ZHANG LEI , 2016. The roles of external forcing and natural variability in global warming hiatuses[J]. Climate Dynamics, 47(9-10):3157-3169. |
[64] | ZHANG LEI, KARNAUSKAS K B , 2017 a. The role of tropical interbasin SST gradients in forcing walker circulation trends[J]. Journal of Climate, 30(2):499-508. |
[65] | ZHANG LEI, LI T , 2017 b. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming[J]. Climate Dynamics, 48(3-4):987-997. |
[66] | ZHANG MINGHUA, SONG HUA , 2006. Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific[J]. Geophysical Research Letters, 33(12):L12701. |
[1] | WANG Weiqiang, ZHANG Xiya, XU Kang, LI Junling, MIAO Haoyu. Assessment of El Niño diversity simulations using CMIP6 and CMIP5 models* [J]. Journal of Tropical Oceanography, 2023, 42(2): 21-33. |
[2] | LI Fuzi, ZHENG Xiaotong. Assessment of eastern Pacific ITCZ dipole mode simulations by CMIP5 models [J]. Journal of Tropical Oceanography, 2021, 40(1): 44-57. |
[3] | SUN Zhiquan, XIANG Jie, GUAN Yuping. Strengthening of the Pacific Walker Circulation in the recent decades [J]. Journal of Tropical Oceanography, 2016, 35(2): 19-29. |
|