Journal of Tropical Oceanography ›› 2022, Vol. 41 ›› Issue (5): 1-16.doi: 10.11978/2021121CSTR: 32234.14.2021121
• Marine Hydrology • Next Articles
LIU Shuang1,2(), JING Zhiyou1(
), ZHAN Haigang1
Received:
2021-09-07
Revised:
2021-12-27
Online:
2022-09-10
Published:
2021-12-28
Contact:
JING Zhiyou
E-mail:liushuang_57@126.com;jingzhiyou@scsio.ac.cn
Supported by:
CLC Number:
LIU Shuang, JING Zhiyou, ZHAN Haigang. Predicting the mesoscale eddy in the tropical and subtropical ocean based on generative adversarial network model[J].Journal of Tropical Oceanography, 2022, 41(5): 1-16.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig. 2
Diagram of how the model works. (a) The training process, time series of different lengths are randomly selected from the training set, and each time series is cropped with the random subregion, then trained in G and generated data, the authenticity of the data is evaluated in D; (b) The verification process is carried out synchronously with the training process. The complete research data in the verification set is input into the model for prediction; (c) The test process is carried out after the model training is completed. The test set data with removed the continental shelf is input into the model for prediction to obtain the final prediction data. SLA refers to sea level anomaly; G is the generator; D is the discriminator"
Fig. 3
Spatial distribution of the SLA daily MAE. (a) Daily average MAE on the 7th day of forecast. The rectangular box corresponds to each region in Figure 4. Red represents the southwest of Taiwan Island, blue represents the northwest of Luzon Island, green represents the southwest of Luzon Island, purple indicates the central and western waters of the South China Sea, and black represents the Northwest Pacific; (b) Daily average MAE on the 14th day of forecast; (c) Daily average MAE on the 21st day of forecast; (d) Daily average MAE on the 28th day of forecast"
Fig. 10
Different statistics of the eddy position. (a) Average prediction accuracy; (b) The mean minimum eddy center distance between the real and predicted results in the accurately predicted eddies; (c) In the accurately predicted eddies, the number of eddies in different amplitude ranges, and the column height represents the number; (d) In the accurately predicted eddies, the number of eddies in different radius ranges, and the column height represents the number. The abscissa of all subgraphs stands for days"
Fig. 11
Spatial distribution of the difference between observation and the prediction field of the eddy kinetic energy. (a) Spatial distribution of the difference on the 7th day of prediction; (b) Spatial distribution of the difference on the 14th day of prediction; (c) Spatial distribution of the difference on the 21st day of prediction; (d) Spatial distribution of the difference on the 28th day of prediction"
Fig. 12
Distribution of real eddies and predicted eddies under normal weather conditions and typhoon weather conditions. (a~e) correspond to normal weather conditions from October 1, 2019 to October 5, 2019 respectively; (f~j) correspond to typhoon Nakri conditions from November 1, 2019 to November 5, 2019 respectively. The light red dotted line, red solid line, light blue dotted line and blue solid line in the figure represent the distribution of real anticyclone, predicted anticyclone, real cyclone and predicted cyclone respectively. The pink dotted line is the central position and moving path of Nakri"
[1] | 白杨, 李威, 邵祺, 2020. 基于经验正交函数和机器学习的南海海面高度异常预测[J]. 海洋通报, 39(6): 678-688. |
BAI YANG, LI WEI, SHAO QI, 2020. A prediction model of sea surface height anomaly based on empirical orthogonal function and machine learning[J]. Marine Science Bulletin, 39(6): 678-688. (in Chinese with English abstract) | |
[2] | 陈敏, 侯一筠, 赵保仁, 2003. 冬季东中国海环流中的中尺度涡旋数值模拟[J]. 海洋科学, 27(1): 53-60. |
CHEN MIN, HOU YIJUN, ZHAO BAOREN, 2003. Numerical simulation of the MESO-scale eddy in the East China Sea in winter[J]. Marine Sciences, 27(1): 53-60. (in Chinese with English abstract) | |
[3] | 崔凤娟, 2015. 南海中尺度涡的识别及统计特征分析[D]. 青岛: 中国海洋大学. |
CUI FENGJUAN, 2015. Mesoscale eddies in the South China Sea: identification and statistical characteristics analysis[D]. Qingdao: Ocean University of China. (in Chinese with English abstract) | |
[4] | 江璟瑜, 徐丹亚, 韩宁生, 等, 2021. 基于LSTM的海表面高度异常预测方法[J]. 舰船电子工程, 41(2): 97-99. |
JIANG JINGYU, XU DANYA, HAN NINGSHENG, et al, 2021. Sea surface height anomaly prediction method based on LSTM[J]. Ship Electronic Engineering, 41(2): 97-99. (in Chinese with English abstract) | |
[5] | 李佳讯, 张韧, 陈奕德, 等, 2011. 海洋中尺度涡建模及其在水声传播影响研究中的应用[J]. 海洋通报, 30(1): 37-46. |
LI JIAXUN, ZHANG REN, CHEN YIDE, et al, 2011. Ocean mesoscale eddy modeling and its application in studying the effect on underwater acoustic propagation[J]. Marine Science Bulletin, 30(1): 37-46. (in Chinese with English abstract) | |
[6] |
王桂华, 苏纪兰, 齐义泉, 2005. 南海中尺度涡研究进展[J]. 地球科学进展, 20(8): 882-886.
doi: 10.11867/j.issn.1001-8166.2005.08.0882 |
WANG GUIHUA, SU JILAN, QI YIQUAN, 2005. Advances in studying mesoscale eddies in South China Sea[J]. Advances in Earth Science, 20(8): 882-886. (in Chinese with English abstract) | |
[7] |
吴新荣, 韩桂军, 张学峰, 等, 2012. 人工神经网络在南海近海面气温反演中的应用研究[J]. 热带海洋学报, 31(2): 7-14.
doi: 10.11978/j.issn.1009-5470.2012.02.002 |
WU XINRONG, HAN GUIJUN, ZHANG XUEFENG, et al, 2012. Retrieving near-surface air temperature in the South China Sea using artificial neural network[J]. Journal of Tropical Oceanography, 31(2): 7-14. (in Chinese with English abstract) | |
[8] | 肖汶斌, 刘巍, 程兴华, 等, 2018. 海洋中尺度涡水声场特性分析[C]// 2018年全国声学大会论文集:B水声物理. 北京: 中国声学学会: 12-13. |
XIAO WENBIN, LIU WEI, CHENG XINGHUA, et al, 2018. Acoustical propagation characteristics of an ocean mesoscale eddy[C]// Proceedings of National Conference ACOUSTICS 2018:B underwater acoustic physics. Beijing: Acoustical Society of China: 12-13. (in Chinese) | |
[9] | 张盟, 杨玉婷, 孙鑫, 等, 2020. 基于深度卷积网络的海洋涡旋检测模型[J]. 南京航空航天大学学报, 52(5): 708-713. |
ZHANG MENG, YANG YUTING, SUN XIN, et al, 2020. Ocean eddy detection model based on deep convolution neural network[J]. Journal of Nanjing University of Aeronautics & Astronautics, 52(5): 708-713. (in Chinese with English abstract) | |
[10] | 郑全安, 谢玲玲, 郑志文, 等, 2017. 南海中尺度涡研究进展[J]. 海洋科学进展, 35(2): 131-158. |
ZHENG QUAN’AN, XIE LINGLING, ZHENG ZHIWEN, et al, 2017. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 35(2): 131-158. (in Chinese with English abstract) | |
[11] |
周水华, 洪晓, 梁昌霞, 等, 2020. 基于人工神经网络的台风浪高快速计算方法[J]. 热带海洋学报, 39(4): 25-33.
doi: 10.11978/2019089 |
ZHOU SHUIHUA, HONG XIAO, LIANG CHANGXIA, et al, 2020. A method of tropical cyclone wave height calculation based on Artificial Neural Network[J]. Journal of Tropical Oceanography, 39(4): 25-33. (in Chinese with English abstract)
doi: 10.11978/2019089 |
|
[12] |
APARNA S G, D’SOUZA S, ARJUN N B, 2018. Prediction of daily sea surface temperature using artificial neural networks[J]. International Journal of Remote Sensing, 39(12): 4214-4231.
doi: 10.1080/01431161.2018.1454623 |
[13] |
CHELTON D B, DESZOEKE R A, SCHLAX M G, et al, 1998. Geographical variability of the first baroclinic Rossby radius of deformation[J]. Journal of Physical Oceanography, 28(3): 433-460.
doi: 10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2 |
[14] | CHELTON D B, SCHLAX M G, SAMELSON R M, et al, 2007. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 34(15): L15606. |
[15] |
CHELTON D B, SCHLAX M G, SAMELSON R M, 2011. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 91(2): 167-216.
doi: 10.1016/j.pocean.2011.01.002 |
[16] | CHEN GENGXIN, HOU YIJUN, CHU XIAOQING, 2011. Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research: Oceans, 116(C6): C06018. |
[17] |
DONG CHANGMING, MCWILLIAMS J C, LIU YU, et al, 2014. Global heat and salt transports by eddy movement[J]. Nature Communications, 5: 3294.
doi: 10.1038/ncomms4294 pmid: 24534770 |
[18] |
DU YANLING, SONG WEI, HE QI, et al, 2019. Deep learning with multi-scale feature fusion in remote sensing for automatic oceanic eddy detection[J]. Information Fusion, 49: 89-99.
doi: 10.1016/j.inffus.2018.09.006 |
[19] |
DUO ZIJUN, WANG WENKE, WANG HUIZAN, 2019. Oceanic mesoscale eddy detection method based on deep learning[J]. Remote Sensing, 11(16): 1921.
doi: 10.3390/rs11161921 |
[20] | DYELAX, 2021. Adversarial video generation[CP/OL]. https://github.com/dyelax/Adversarial_Video_Generation. |
[21] | FRANZ K, ROSCHER R, MILIOTO A, et al, 2018. Ocean eddy identification and tracking using neural networks[C]// IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE: 6887-6890. |
[22] | GOODFELLOW I, BENGIO Y, COURVILLE A, 2016. Deep learning[M]. Cambridge: MIT Press. |
[23] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al, 2014. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press: 2672-2680. |
[24] |
HAM Y G, KIM J H, LUO JINGJIA, 2019. Deep learning for multi-year ENSO forecasts[J]. Nature, 573(7775): 568-572.
doi: 10.1038/s41586-019-1559-7 |
[25] | KINGMA D P, BA L J, 2014. Adam: a method for stochastic optimization[C]// International Conference on Learning Representation. Ithaca. |
[26] | KURIAN J, COLAS F, CAPET X, et al, 2011. Eddy properties in the California current system[J]. Journal of Geophysical Research: Oceans, 116(C8): C08027. |
[27] |
LECUN Y, BENGIO Y, HINTON G, 2015. Deep learning[J]. Nature, 521(7553): 436-444.
doi: 10.1038/nature14539 |
[28] |
LEE S, YOU D, 2019. Data-driven prediction of unsteady flow over a circular cylinder using deep learning[J]. Journal of Fluid Mechanics, 879: 217-254.
doi: 10.1017/jfm.2019.700 |
[29] | LGUENSAT R, SUN MIAO, FABLET R, et al, 2018. EddyNet: a deep neural network for pixel-wise classification of oceanic eddies[C]// IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE: 1764-1767. |
[30] |
LI JIAXUN, WANG GUIHUA, XUE HUIJIE, et al, 2019. A simple predictive model for the eddy propagation trajectory in the northern South China Sea[J]. Ocean Science, 15(2): 401-412.
doi: 10.5194/os-15-401-2019 |
[31] |
LIMA E, SUN XIN, DONG JUNYU, et al, 2017. Learning and transferring convolutional neural network knowledge to ocean front recognition[J]. IEEE Geoscience and Remote Sensing Letters, 14(3): 354-358.
doi: 10.1109/LGRS.2016.2643000 |
[32] |
LU WENFANG, SU HUA, YANG XIN, et al, 2019. Subsurface temperature estimation from remote sensing data using a clustering-neural network method[J]. Remote Sensing of Environment, 229: 213-222.
doi: 10.1016/j.rse.2019.04.009 |
[33] |
LU XIAOQIN, YU HUI, YING MING, et al, 2021. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Advances in Atmospheric Sciences, 38(4): 690-699.
doi: 10.1007/s00376-020-0211-7 |
[34] |
MA CHUNYONG, LI SIQING, WANG ANNI, et al, 2019. Altimeter observation-based eddy nowcasting using an improved Conv-LSTM network[J]. Remote Sensing, 11(7): 783.
doi: 10.3390/rs11070783 |
[35] |
MASON E, PASCUAL A, MCWILLIAMS J C, 2014. A new sea surface height-based code for oceanic mesoscale eddy tracking[J]. Journal of Atmospheric and Oceanic Technology, 31(5): 1181-1188.
doi: 10.1175/JTECH-D-14-00019.1 |
[36] | MASON E, 2020. The code used to compute the Mesoscale Eddy Trajectories Atlas from version 3.0 onwards, was developed in collaboration between IMEDEA (E. Mason) and CLS, is freely available under GNU General Public License[EB/OL]. https://github.com/AntSimi/py-eddy-tracker. |
[37] | MATHIEU M, COUPRIE C, LECUN Y, 2015. Deep multi-scale video prediction beyond mean square error[C]// 4th International Conference on Learning Representation. San Juan. https://arxiv.org/abs/1511.05440. |
[38] | PENVEN P, ECHEVIN V, PASAPERA J, et al, 2005. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: a modeling approach[J]. Journal of Geophysical Research: Oceans, 110(C10): C10021. |
[39] | RASP S, DUEBEN P D, SCHER S, et al, 2020. WeatherBench: a benchmark data set for data-driven weather forecasting[J]. Journal of Advances in Modeling Earth Systems, 12(11): e2020MS002203. |
[40] |
ROBINSON A R, CARTON J A, MOOERS C N K, et al, 1984. A real-time dynamical forecast of ocean synoptic/mesoscale eddies[J]. Nature, 309(5971): 781-783.
doi: 10.1038/309781a0 |
[41] |
RÜTTGERS M, LEE S, JEON S, et al, 2019. Prediction of a typhoon track using a generative adversarial network and satellite images[J]. Scientific Reports, 9(1): 6057.
doi: 10.1038/s41598-019-42339-y pmid: 30988405 |
[42] | SHAO QI, LI WEI, HAN GUIJUN, et al, 2021. A deep learning model for forecasting sea surface height anomalies and temperatures in the South China Sea[J]. Journal of Geophysical Research: Oceans, 126(7): e2021JC017515. |
[43] |
SHRIVER J F, HURLBURT H E, SMEDSTAD O M, et al, 2007. 1/32 degrees real-time global ocean prediction and value-added over 1/16 degrees resolution[J]. Journal of Marine Systems, 65(1-4): 3-26.
doi: 10.1016/j.jmarsys.2005.11.021 |
[44] |
SUN MIAO, TIAN FENGLIN, LIU YINGJIE, et al, 2017. An improved automatic algorithm for global eddy tracking using satellite altimeter data[J]. Remote Sensing, 9(3): 206.
doi: 10.3390/rs9030206 |
[45] |
WANG GUIHUA, SU JILAN, CHU P C, 2003. Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophysical Research Letters, 30(21): 2121.
doi: 10.1029/2003GL018532 |
[46] |
WANG XIN, WANG HUIZAN, LIU DONGHAN, et al, 2020. The prediction of oceanic mesoscale eddy properties and propagation trajectories based on machine learning[J]. Water, 12(9): 2521.
doi: 10.3390/w12092521 |
[47] | XIAO CHANGJIANG, CHEN NENGCHENG, HU CHULI, et al, 2019. A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data[J]. Environmental Modelling & Software, 120: 104502. |
[48] |
XU GUANGJUN, YANG WENXIAN, et al, 2019. Oceanic eddy identification using an AI scheme[J]. Remote Sensing, 11(11): 1349.
doi: 10.3390/rs11111349 |
[49] |
YANG HAIYUAN, WU LIXIN, LIU HAILONG, et al, 2013. Eddy energy sources and sinks in the South China Sea[J]. Journal of Geophysical Research: Oceans, 118(9): 4716-4726.
doi: 10.1002/jgrc.20343 |
[50] |
YANG YUTING, DONG JUNYU, SUN XIN, et al, 2018. A CFCC-LSTM model for sea surface temperature prediction[J]. IEEE Geoscience and Remote Sensing Letters, 15(2): 207-211.
doi: 10.1109/LGRS.2017.2780843 |
[51] |
YING MING, ZHANG WEI, YU HUI, et al, 2014. An overview of the China Meteorological Administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 31(2): 287-301.
doi: 10.1175/JTECH-D-12-00119.1 |
[52] |
ZHANG ZHENGGUANG, WANG WEI, QIU BO, 2014. Oceanic mass transport by mesoscale eddies[J]. Science, 345(6194): 322-324.
doi: 10.1126/science.1252418 pmid: 25035491 |
[53] |
ZHANG ZHIWEI, TIAN JIWEI, QIU BO, et al, 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea[J]. Scientific Reports, 6: 24349.
doi: 10.1038/srep24349 pmid: 27074710 |
[54] |
ZHANG ZHIWEI, ZHAO WEI, QIU BO, et al, 2017. Anticyclonic eddy sheddings from kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea[J]. Journal of Physical Oceanography, 47(6): 1243-1259.
doi: 10.1175/JPO-D-16-0185.1 |
[1] | Xia WANG,Wendong FANG,Rongyu CHEN. Intra-seasonal variability of sea level anomalies and their propagation features in the northern South China Sea from 25 years of satellite altimetry data [J]. Journal of Tropical Oceanography, 2019, 38(3): 1-12. |
[2] | QIU Fu-wen, FANG Wen-dong, ZHU Da-yong, CHA Jing. Characteristics and mechanism of the sea level rise in the South China Sea during 2005~2010 [J]. Journal of Tropical Oceanography, 2015, 34(5): 11-18. |
|