[1] |
黄利娜, 吴光斌, 匡凤元, 等, 2020. 莲雾果实C4H基因的克隆及在NO处理下的表达分析[J]. 集美大学学报(自然科学版), 25(2): 105-112.
|
|
HUANG LINA, WU GUANGBIN, KUANG FENGYUAN, et al, 2020. Cloning and expression analysis of cinnamic acid-4-hydroxylase from wax apple fruit under NO treatment[J]. Journal of Jimei University (Natural Science), 25(2): 105-112. (in Chinese with English abstract)
|
[2] |
梁惠桢, 朱家红, 戴好富, 等, 2018. 海南龙血树肉桂酸-4-羟基化酶基因(DcC4H)的克隆及表达分析[J]. 分子植物育种, 16(24): 7984-7989.
|
|
LIANG HUIZHEN, ZHU JIAHONG, DAI HAOFU, et al, 2018. Cloning and expression analysis of cinnamate 4-hydroxylase gene DcC4H in Dracaena cambodiana[J]. Molecular Plant Breeding, 16(24): 7984-7989. (in Chinese with English abstract)
|
[3] |
芮海云, 刘清泉, 沈振国, 2019. 质外体蛋白质在植物重金属耐性中的作用[J]. 生物学杂志, 36(3): 88-91.
|
|
RUI HAIYUN, LIU QINGQUAN, SHEN ZHENGUO, 2019. Roles of apoplastic protein in plant heavy metal tolerance[J]. Journal of Biology, 36(3): 88-91. (in Chinese with English abstract)
|
[4] |
宋晖, 王友绍, 2012. 萘胁迫下秋茄MnSOD基因和C4H基因的实时定量表达分析[J]. 生态科学, 31(2): 104-108.
|
|
SONG HUI, WANG YOUSHAO, 2012. Expression analysis of MnSOD gene and C4H gene in Kandelia candel under naphthalene stress[J]. Ecological Science, 31(2): 104-108. (in Chinese with English abstract)
|
[5] |
宋慕波, 周伟政, 唐永胜, 等, 2020. 荸荠肉桂酸4-羟基化酶基因的克隆及其在鲜切荸荠黄化过程中的表达分析[J]. 基因组学与应用生物学, 39(2): 666-673.
|
|
SONG MUBO, ZHOU WEIZHENG, TANG YONGSHENG, et al, 2020. Cloning and expression analysis of cinnamic acid 4-hydroxylase gene during yellowing of fresh-cut Chinese water-chestnut[J]. Genomics and Applied Biology, 39(2): 666-673. (in Chinese with English abstract)
|
[6] |
宋西红, 郝磊, 吕晓玲, 等, 2015. 紫苏肉桂酸4-羟基化酶基因的克隆与表达[J]. 广东农业科学, 42(11): 124-129.
|
|
SONG XIHONG, LEI HAO, LYU XIAOLING, et al, 2015. Cloning and expression analysis of cinnamate 4-hydroxylase gene from Perilla frutescens[J]. Guangdong Agricultural Sciences, 42(11): 124-129. (in Chinese with English abstract)
|
[7] |
王友绍, 孙翠慈, 王玉图, 等, 2019. 生态学理论与技术创新引领我国热带、亚热带海洋生态研究与保护[J]. 中国科学院院刊, 24(1): 121-129.
|
|
WANG YOUSHAO, SUN CUICI, WANG YUTU, et al, 2019. Ecological theory and technological innovations guide marine ecology research and protection in tropical and subtropical areas of China[J]. Bulletin of the Chinese Academy of Sciences, 34 (1): 121-129. (in Chinese with English abstract)
|
[8] |
王友绍, 2019. 红树林分子生态学[M]. 北京: 科学出版社: 23-24.
|
|
WANG YOUSHAO, 2019. Molecular ecology of mangroves[M]. Beijing: Science Press: 23-24. (in Chinese with English abstract)
|
[9] |
姚胜波, 王文钊, 李明卓, 等, 2015. 茶树肉桂酸4-羟基化酶基因的克隆及表达分析[J]. 茶叶科学, 35(1): 35-44.
|
|
YAO SHENGBO, WANG WENZHAO, LI MINGZHUO, et al, 2015. The gene cloning and expression analysis of C4H in tea plant (Camellia sinensis)[J]. Journal of Tea Science, 35(1): 35-44. (in Chinese with English abstract)
|
[10] |
BLEE K, CHOI J W, O'CONNELL A P, et al, 2001. Antisense and sense expression of cDNA coding for CYP73A15, a class Ⅱ cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco[J]. Phytochemistry, 57(7): 1159-1166.
doi: 10.1016/S0031-9422(01)00150-9
|
[11] |
BOURGEOIS C, ALFARO A C, DENCER-BROWN A, et al, 2019. Stocks and soil-plant transfer of macro-nutrients and trace metals in temperate New Zealand estuarine mangroves[J]. Plant and Soil, 436(1-2): 565-586.
doi: 10.1007/s11104-019-03945-x
|
[12] |
CHENG SHUIYUAN, YAN JIAPING, MENG XIANGXIANG, et al, 2018. Characterization and expression patterns of a cinnamate-4-hydroxylase gene involved in lignin biosynthesis and in response to various stresses and hormonal treatments in Ginkgo biloba[J]. Acta Physiologiae Plantarum, 40(1): 7.
doi: 10.1007/s11738-017-2585-4
|
[13] |
DOCIMO T, CONSONNI R, CORAGGIO I, et al, 2013. Early phenylpropanoid biosynthetic steps in Cannabis sativa: Link between genes and metabolites[J]. International Journal of Molecular Sciences, 14(7): 13626-13644.
doi: 10.3390/ijms140713626
|
[14] |
FAHRENDORF T, DIXON R A, 1993. Stress responses in alfalfa (Medicago sativa L.) ⅩⅧ: molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome p450[J]. Archives of Biochemistry and Biophysics, 305(2): 509-515.
doi: 10.1006/abbi.1993.1454
|
[15] |
SYKES R W, GJERSING E L, FOUTZ K, et al, 2015. Down-regulation of p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway of Eucalyptus urophylla x E. grandis leads to improved sugar release[J]. Biotechnology for Biofuels, 8: 128.
doi: 10.1186/s13068-015-0316-x
|
[16] |
TAM N F Y, WONG Y S, 1997. Accumulation and distribution of heavy metals in a simulated mangrove system treated with sewage[J]. Hydrobiologia, 352(1-3): 67-75.
doi: 10.1023/A:1003057407878
|
[17] |
UMEMOTO N, NAKAYASU M, OHYAMA K, et al, 2016. Two cytochrome P450 monooxygenases catalyze early hydroxylation steps in the potato steroid glycoalkaloid biosynthetic pathway[J]. Plant Physiology, 171(4): 2458-2467.
doi: 10.1104/pp.16.00137
pmid: 27307258
|
[18] |
USMAN A R A, ALKREDAA R S, AL-WABEL M I, 2013. Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator[J]. Ecotoxicology and Environmental Safety, 97: 263-270.
doi: 10.1016/j.ecoenv.2013.08.009
|
[19] |
WANG YOUSHAO, GU JIDONG, 2021. Ecological responses, adaptation and mechanisms of mangrove wetland ecosystem to global climate change and anthropogenic activities[J]. International Biodeterioration & Biodegradation, 162: 105248.
|
[20] |
WINKEL-SHIRLEY B, 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology[J]. Plant Physiology, 126(2): 485-493.
doi: 10.1104/pp.126.2.485
|