[1] |
邓校国, 蒋无穷, 许晓翠, 等, 2019. 低伤害纳米增效压裂液在福山油田的应用[J]. 中国矿业, 28(S1): 315-316, 321.
|
|
DENG XIAOGUO, JIANG WUQIONG, XU XIAOCUI, et al, 2019. Application of low damage nano-enhanced fracturing fluid in Fushan oilfield[J]. China Mining Magazine, 28(S1): 315-316, 321 (in Chinese with English abstract).
|
[2] |
高新平, 彭钧亮, 彭欢, 等, 2018. 页岩气压裂用石英砂替代陶粒导流实验研究[J]. 钻采工艺, 41(5): 35-37, 41.
|
|
GAO XINPING, PENG JUNLIANG, PENG HUAN, et al, 2018. Experimental study on feasibility of replace ceramic with sand in shale fracturing[J]. Drilling & Production Technology, 41(5): 35-37, 41 (in Chinese with English abstract).
|
[3] |
寇双锋, 陈绍宁, 何乐, 等, 2019. 石英砂在苏里格致密砂岩气藏压裂的适应性[J]. 油气藏评价与开发, 9(2): 65-70.
|
|
KOU SHUANGFENG, CHEN SHAONING, HE LE, et al, 2019. Adaptability of quartz sand for fracturing of Sulige tight sand gas reservoir[J]. Reservoir Evaluation and Development, 9(2): 65-70 (in Chinese with English abstract).
|
[4] |
雷群, 胥云, 才博, 等, 2022. 页岩油气水平井压裂技术进展与展望[J]. 石油勘探与开发, 49(1): 166-172.
doi: 10.11698/PED.2022.01.15
|
|
LEI QUN, XU YUN, CAI BO, et al, 2022. Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs[J]. Petroleum Exploration and Development, 49(1): 166-172 (in Chinese with English abstract).
|
[5] |
田刚, 肖阳, 石善志, 等, 2020. 玛18井区压裂支撑剂适应性研究[J]. 特种油气藏, 27(3): 169-174.
|
|
TIAN GANG, XIAO YANG, SHI SHANZHI, et al, 2020. Fracturing proppant adaptability in the Wellinline Ma18[J]. Special Oil and Gas Reservoirs, 27(3): 169-174 (in Chinese with English abstract).
|
[6] |
魏凯, 邓校国, 付杰, 等, 2022. 海南流沙港组致密砂岩体积压裂工艺研究及应用[J]. 钻探工程, 49(5): 194-201.
|
|
WEI KAI, DENG XIAOGUO, FU JIE, et al, 2022. Volume fracturing technology for tight sandstone reservoir stimulation in Liushagang formation in Hainan[J]. Drilling Engineering, 49(5): 194-201 (in Chinese with English abstract).
|
[7] |
郑新权, 王欣, 张福祥, 等, 2021. 国内石英砂支撑剂评价及砂源本地化研究进展与前景展望[J]. 中国石油勘探, 26(1): 131-137.
doi: 10.3969/j.issn.1672-7703.2021.01.011
|
|
ZHENG XINQUAN, WANG XIN, ZHANG FUXIANG, et al, 2021. Assessment of domestic sand proppant and research progress and prospects in utilizing local sand[J]. China Petroleum Exploration, 26(1): 131-137 (in Chinese with English abstract).
|
[8] |
周小金, 段永刚, 朱愚, 等, 2020. 长宁地区石英砂替代陶粒先导性试验及效果评价[J]. 钻采工艺, 43(1): 57-60.
doi: 10.3969/J. ISSN.1006-768X.2020.01.17
|
|
ZHOU XIAOJIN, DUAN YONGGANG, ZHU YU, et al, 2020. Pilot test and effect evaluation of replacement of ceramic by quartz sand in Changning area[J]. Drilling & Production Technology, 43(1): 57-60 (in Chinese with English abstract).
|
[9] |
ANSI/API RECOMMENDED PRACTICE 19D, 2015: 5. Measuring the long-term conductivity of proppants. Reaffirmed[S]. Washington: API Publishing Services.
|
[10] |
API STANDARD 19C, 2018: 8. Measurement of and specifications for proppants used in hydraulic fracturing and gravel-packing operations. Second Edition[S]. Washington: API Publishing Services.
|
[11] |
CRAIG W, TIHANA F, SHI JINGYU, et al, 2015. Proppant selection criteria and their influence on performance of North Dakota oil-rich shale wells[C]. Unconventional Resources Technology conference. SPE-178598-MS/URTeC: 2154615: 1-11.
|
[12] |
LI SHUAI, CAI BO, DING YUNHONG, et al, 2021. Lesson learned from low-cost fracking of low permeability Glutenite reservoirs[C]. Society of Petroleum Engineers. IADC/SPE-201078-MS: 1-12.
|
[13] |
PROCHNOW S, BROWN R L, REXILIUS J P, et al, 2014. Linking rock mechanic petrophysics to proppant selection in the Wolfcamp: capitalizing on log based value of information[C]. Society of Petroleum Engineers. SPE-171606-MS: 1-13.
|
[14] |
YANG MEI, MICHAEL J E, WEI CHENJI, et al, 2013a. Hydraulic fracture design flaws-proppant selection[C]. Society of Petroleum Engineer. SPE-166299-MS: 1-10.
|
[15] |
YANG MEI, PROPPANTS C, LIU XICAI, et al, 2013b. Hydraulic fracture design flaws-proppant selection[C]. SPE Western Regional & AAPG Pacific Section Meeting. SPE-165328-MS: 1-19.
|