[1] |
杜君峰, 王顺坤, 张德庆, 等, 2022. 基于神经网络模型的波候变化影响下深海系泊缆疲劳损伤评估[J]. 船舶力学, 26(8): 1189-1198.
|
|
DU JUNFENG, WANG SHUNKUN, ZHANG DEQING, et al, 2022. Fatigue damage assessment of deep-sea mooring lines under the influence of wave climate change based on neural network model[J]. Journal of Ship Mechanics, 26(8): 1189-1198 (in Chinese with English abstract).
|
[2] |
高言乐, 2020. 风浪联合作用下Braceless半潜式风机动力特性分析[D]. 大连: 大连理工大学.
|
|
GAO YANLE, 2020. Dynamic characteristics analysis of braceless semi-submersible offshore wind turbine under the combined wind and wave conditions[D]. Dalian: Dalian University of Technology (in Chinese with English abstract).
|
[3] |
刘超, 2007. 海洋工程锚泊系统计算与分析[D]. 武汉: 武汉理工大学: 1-55.
|
|
LIU CHAO, 2007. The calculation and analysis of mooring system[D]. Wuhan: Wuhan University of Technology: 1-55 (in Chinese with English abstract).
|
[4] |
马刚, 何栗兴, 张旭, 等, 2022. 向变极端相干阵风下浮式风机系泊线断裂风险因素分析[J]. 风机技术, 64(3): 57-62.
|
|
MA GANG, HE LIXING, ZHANG XU, et al, 2022. Hazardous factor analysis of mooring fracture in floating offshore wind turbine under extreme coherent gust with direction change[J]. Chinese Journal of Turbomachinery, 64(3): 57-62 (in Chinese with English abstract).
|
[5] |
唐友刚, 张若瑜, 程楠, 等, 2009. 集中质量法计算深海系泊冲击张力[J]. 天津大学学报, 42(8): 695-701.
|
|
TANG YOUGANG, ZHANG RUOYU, CHENG NAN, et al, 2009. Analysis of snap tension of deep water mooring with lumped mass method[J]. Journal of Tianjin University, 42(8): 695-701 (in Chinese with English abstract).
|
[6] |
王春, 陆义超, 邢占清, 等, 2015. 基于神经网络算法的海上风机结构状态监测研究[J]. 中国水利水电科学研究院学报, 13(5): 344-351.
|
|
WANG CHUN, LU YICHAO, XING ZHANQING, et al, 2015. Research of offshore wind turbine status monitoring based on neural network algorithm[J]. Journal of China Institute of Water Resources and Hydropower Research, 13(5): 344-351 (in Chinese with English abstract).
|
[7] |
王瑞华, 张素侠, 刘习军, 2020. 浸没式浮筒对系泊缆松弛-张紧特性的影响研究[J]. 应用力学学报, 37(2): 543-549, 926.
|
|
WANG RUIHUA, ZHANG SUXIA, LIU XIJUN, 2020. Study on the effect of submersed buoy on the taut-slack characteristics of the mooring line[J]. Chinese Journal of Applied Mechanics, 37(2): 543-549, 926 (in Chinese with English abstract).
|
[8] |
易振宇, 蒋昌波, 屈科, 等, 2021. 聚焦波浪在浅堤上传播变形高精度数值模拟研究[J]. 海洋工程, 39(1): 32-42.
|
|
YI ZHENYU, JIANG CHANGBO, QU KE, et al, 2021. High-resolution numerical simulation of focused wave propagation and deformation on submerged breakwater[J]. The Ocean Engineering, 39(1): 32-42 (in Chinese with English abstract).
|
[9] |
张德庆, 王超, 杜君峰, 2021. 基于人工神经网络算法的深海浮式系统动力响应预报方法[J]. 中国造船, 62(1): 123-132.
|
|
ZHANG DEQING, WANG CHAO, DU JUNFENG, 2021. A novel method for predicting dynamic response of deep-sea floating system based on artificial neural network[J]. Shipbuilding of China, 62(1): 123-132 (in Chinese with English abstract).
|
[10] |
张素侠, 唐友刚, 林维学, 等, 2008. 水下缆绳松弛-张紧过程的冲击张力实验研究[J] 中国造船, 49(增刊2): 385-390.
|
|
ZHANG SU XIA, TANG YOU GANG, LIN WEI XUE, et al, 2008. Experimental investigation of marine cable snap tension in taut-slack condition[J]. Shipbuilding of China, 49(Special 2): 385-390 (in Chinese with English abstract).
|
[11] |
仲凡, 连宇顺, 郑金海, 等, 2024. 不同材质共享缆绳对浮式风电场系泊响应的影响[J]. 中国舰船研究, 19(4): 59-70.
|
|
ZHONG FAN, LIAN YUSHUN, ZHENG JINHAI, et al, 2024. Effects of shared lines with different materials on mooring response of the floating wind farm[J]. Chinese Journal of Ship Research, 19(4): 59-70 (in Chinese with English abstract).
|
[12] |
BERTHELSEN P A, FALTINSEN O M, 2008. A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries[J]. Journal of Computational Physics, 227(9): 4354-4397.
|
[13] |
BIHS H, CHELLA M A, KAMATH A, et al, 2017. Numerical investigation of focused waves and their interaction with a vertical cylinder using REEF3D[J]. Journal of Offshore Mechanics and Arctic Engineering, 139(4): 041101.
|
[14] |
KINGMA D P, BA J, 2017. Adam: A Method for Stochastic Optimization[J/OL]. arXiv:1412.6980v9 (2017-01-30)[2024-09-13]. https://arxiv.org/abs/1412.6980.
|
[15] |
LECUN Y, BENGIO Y, HINTON G, 2015. Deep learning[J]. Nature, 521(7553): 436-444.
|
[16] |
LU WEI, GE FEI, WANG LEI, et al, 2011. On the slack phenomena and snap force in tethers of submerged floating tunnels under wave conditions[J]. Marine Structures, 24(4): 358-376.
|
[17] |
NING D Z, ZANG J, LIU S X, et al, 2009. Free-surface evolution and wave kinematics for nonlinear uni-directional focused wave groups[J]. Ocean Engineering, 36(15/16): 1226-1243.
|
[18] |
QIAO DONGSHENG, LI PENG, MA GANG, et al, 2021. Realtime prediction of dynamic mooring lines responses with LSTM neural network model[J]. Ocean Engineering, 219: 108368.
|
[19] |
SHI WEI, HU LEHAN, LIN ZAIBIN, et al, 2023. Short-term motion prediction of floating offshore wind turbine based on Muti-input LSTM neural network[J]. Ocean Engineering, 280: 114558.
|
[20] |
VASSALOS D, HUANG SHAN, KOUROUKLIS A, 2004. Experimental investigation of snap loading of marine cables[C/OL]. Toulon:The International Society of Offshore and Polar Engineers, [2024-09-13]. https://publications.isope.org/proceedings/ISOPE/ISOPE%202004/volume2/2004-jsc-122.pdf
|
[21] |
NAIR V, HINTON G E, NAIR V, et al, 2010. Rectified linear units improve restricted Boltzmann machines[C]// Proceedings of the 27th International Conference on International Conference on Machine Learning. Haifa: ACM: 807-814.
|
[22] |
WANG ZIMING, QIAO DONGSHENG, YAN JUN, et al, 2022. A new approach to predict dynamic mooring tension using LSTM neural network based on responses of floating structure[J]. Ocean Engineering, 249: 110905.
|
[23] |
WU MINGHAO, STRATIGAKI V, TROCH P, et al, 2019. Experimental study of a moored floating oscillating water column wave-energy converter and of a moored cubic box[J]. Energies, 12(10): 1834.
|