Journal of Tropical Oceanography ›› 2022, Vol. 41 ›› Issue (4): 1-19.doi: 10.11978/YG2021002CSTR: 32234.14.YG2021002
• Review • Previous Articles Next Articles
GAO Shu1(), JIA Jianjun2, YU Qian1
Received:
2021-08-03
Revised:
2021-09-11
Online:
2022-07-10
Published:
2021-10-11
Contact:
GAO Shu
E-mail:shugao@nju.edu.cn
Supported by:
CLC Number:
GAO Shu, JIA Jianjun, YU Qian. Green sea dykes: an overview of their principles of sediment, geomorphology and ecosystem dynamics[J].Journal of Tropical Oceanography, 2022, 41(4): 1-19.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig. 2
Four possible scenarios of shoreline dynamics: (a) positive sediment budget, with shoreline advancing to seaward; (b) positive sediment budget, with shoreline retreating to landward; (c) negative sediment budget, with shoreline retreatment; and (d) negative sediment budget, with shoreline advancement. The solid line represents the initial state, and the dotted line denotes the changing state"
Fig. 3
Photographs (taken by the authors) showing the growing environment of oyster over the Jiangsu tidal flats: (a) loosely consolidated mud bed (Rudong, 25th April, 2007); (b) tidal creeks with relatively stable morphology (Wanggang, 4th July, 2003); (c) lower parts of the Spartina alterniflora stems (Wanggang, 13th April, 2006); and (d) the outer edge of the intertidal zone (Haimen, 7th March, 2004)"
Fig. 4
Linear relationship between wave energy dissipation and the width of salt marshes on the Dutch coast. Black dots denote salt marshes, and the regression lines denote the linear relationship between the wave energy dissipation ration and marsh width; gray stars denote bare flat; the three numbers in each panel denote, from top to bottom, the extreme water level, extreme wave height and the wave height/water level ratio; “ZUI” and the other abbreviations denote the name of different observation locations (after Willemsen et al, 2020)"
Fig. 5
A proposed procedure of restoring tidal flats on an eroding coast: (a) the installation of underwater breakwater; (b) slope protection measures in the front of the tidal flat to be restored; (c) artificial sand replenishment, together with tidally induced accumulation of suspended sediment; and (d) the formation of salt marsh and oyster reef niches"
[1] | 陈才俊, 1991. 江苏沿海特大风暴潮灾研究[J]. 海洋通报, 10(6): 19-24. |
CHEN CAIJUN, 1991. On disastrous storm surges upon coast of Jiangsu province[J]. Marine Science Bulletin, 10(6): 19-24. (in Chinese with English abstract) | |
[2] | 陈吉余, 2010. 中国海岸侵蚀概要[M]. 北京: 海洋出版社. |
CHEN JIYU, 2010. An outline of coastal erosion in China[M]. Beijing: Ocean Press. (in Chinese) | |
[3] | 陈蕴真, 高抒, 2010. 江苏南部海岸牡蛎礁演化的几何模型[J]. 海洋与湖沼, 41(1): 1-11. |
CHEN YUNZHEN, GAO SHU, 2010. A geometric model for oyster reef evolution off southern Jiangsu coast, China[J]. Oceanologia et Limnologia Sinica, 41(1): 1-11. (in Chinese with English abstract) | |
[4] | 高抒, 朱大奎, 1988. 江苏淤泥质海岸剖面的初步研究[J]. 南京大学学报, 24(1): 75-84. |
GAO SHU, ZHU DAKUI, 1988. The profile of Jiangsu’s mud coast[J]. Journal of Nanjing University, 24(1): 75-84. (in Chinese with English abstract) | |
[5] | 高抒, 2020. 防范未来风暴潮灾害的绿色海堤蓝图[J]. 科学, 72(4): 12-16. |
GAO SHU, 2020. A blueprint of green sea defence against future storm surge hazards[J]. Science, 72(4): 12-16. (in Chinese with English abstract) | |
[6] | 李润祥, 高抒, 王丹丹, 等, 2014. 2012年秋季白脊管藤壶在江苏如东互花米草盐沼的附着及分布[J]. 海洋学研究, 32(3): 26-35. |
LI RUNXIANG, GAO SHU, WANG DANDAN, et al, 2014. Settlement and spatial distribution of Fistulobalanus albicostatus in the Spartina alterniflora marsh in the autumn 2012, Rudong coast, Jiangsu province[J]. Journal of Marine Sciences, 32(3): 26-35. (in Chinese with English abstract) | |
[7] | 林鹏, 2001. 中国红树林研究进展[J]. 厦门大学学报(自然科学版), 40(2): 592-603. |
LIN PENG, 2001. A review on the mangrove research in China[J]. Journal of Xiamen University (Natural Science), 40(2): 592-603. (in Chinese with English abstract) | |
[8] | 刘桢峤, 周亮, 高抒, 2019. 基于地面3D激光扫描技术的海南岛南部海岸巨砾沉积研究[J]. 海洋学报, 41(11): 127-141. |
LIU ZHENQIAO, ZHOU LIANG, GAO SHU, 2019. Application of the terrestrial laser scanner to the coastal boulders on the southern coast of Hainan Island[J]. Haiyang Xuebao, 41(11): 127-141. (in Chinese with English abstract) | |
[9] | 全为民, 沈新强, 罗民波, 等, 2006. 河口地区牡蛎礁的生态功能及恢复措施[J]. 生态学杂志, 25(10): 1234-1239. |
QUAN WEIMIN, SHEN XINQIANG, LUO MINBO, et al, 2006. Ecological function and restoration measures of oyster reef in estuaries[J]. Chinese Journal of Ecology, 25(10): 1234-1239. (in Chinese with English abstract) | |
[10] | 任美锷, 1986. 江苏省海岸带和海涂资源综合调查[M]. 北京: 海洋出版社: 517 |
REN MEIE, 1986. Comprehensive investigation of the coastal zone and tidal land resources of Jiangsu province[M]. Beijing: Ocean Press: 517 (in Chinese) | |
[11] |
任美锷, 2006. 黄河的输沙量: 过去、现在和将来——距今15万年以来的黄河泥沙收支表[J]. 地球科学进展, 21(6): 551-563.
doi: 10.11867/j.issn.1001-8166.2006.06.0551 |
REN MEIE, 2006. Sediment discharge of the Yellow River, China: past, present and future—A synthesis[J]. Advances in Earth Science, 21(6): 551-563. (in Chinese with English abstract)
doi: 10.11867/j.issn.1001-8166.2006.06.0551 |
|
[12] |
王爱军, 高抒, 陈坚, 等, 2008. 福建泉州湾盐沼对台风“格美”的沉积动力响应[J]. 科学通报, 53(22): 2814-2823.
doi: 10.1007/s11434-008-0365-7 |
WANG AIJUN, GAO SHU, CHEN JIAN, et al, 2009. Sediment dynamic responses of coastal salt marsh to typhoon “KAEMI” in Quanzhou Bay, Fujian Province, China[J]. Chinese Science Bulletin, 54(1): 120-130.
doi: 10.1007/s11434-008-0365-7 |
|
[13] | 王宏, 陈永胜, 田立柱, 等, 2011. 渤海湾全新世贝壳堤与牡蛎礁: 古气候与海面变化[J]. 地质通报, 30(9): 1405-1411. |
WANG HONG, CHEN YONGSHENG, TIAN LIZHU, et al, 2011. Holocene cheniers and oyster reefs in Bohai Bay: palaeoclimate and sea level changes[J]. Geological Bulletin of China, 30(9): 1405-1411. (in Chinese with English abstract) | |
[14] |
夏东兴, 王文海, 武桂秋, 等, 1993. 中国海岸侵蚀述要[J]. 地理学报, 48(5): 468-476.
doi: 10.11821/xb199305010 |
XIA DONGXING, WANG WENHAI, WU GUIQIU, et al, 1993. Coastal erosion in China[J]. Acta Geographica Sinica, 48(5): 468-476. (in Chinese with English abstract)
doi: 10.11821/xb199305010 |
|
[15] |
张华, 韩广轩, 王德, 等, 2015. 基于生态工程的海岸带全球变化适应性防护策略[J]. 地球科学进展, 30(9): 996-1005.
doi: 10.11867/j.issn.1001-8166.2015.09.0996 |
ZHANG HUA, HAN GUANGXUAN, WANG DE, et al, 2015. Ecological engineering based adaptive coastal defense strategy to global change[J]. Advances in Earth Science, 30(9): 996-1005. (in Chinese with English abstract)
doi: 10.11867/j.issn.1001-8166.2015.09.0996 |
|
[16] | 张忍顺, 2004. 江苏小庙洪牡蛎礁的地貌-沉积特征[J]. 海洋与湖沼, 35(1): 1-7. |
ZHANG RENSHUN, 2004. The geomorphology - sedimentology character of oyster reef in Xiaomiaohong tidal channel, Jiangsu province[J]. Oceanologia et Limnologia Sinica, 35(1): 1-7. (in Chinese with English abstract) | |
[17] | 张忍顺, 沈永明, 陆丽云, 等, 2005. 江苏沿海互花米草(Spartina alterniflora)盐沼的形成过程[J]. 海洋与湖沼, 36(4): 358-366. |
ZHANG RENSHUN, SHEN YONGMING, LU LIYUN, et al, 2005. Formation of Spartina alterniflora salt marsh on Jiangsu coast, China[J]. Oceanologia et Limnologia Sinica, 36(4): 358-366. (in Chinese with English abstract) | |
[18] | 张玺, 楼子康, 1959. 牡蛎[M]. 北京: 科学出版社. |
ZHANG XI, LOU ZIKANG, 1959. Oysters[M]. Beijing: Science Press. (in Chinese) | |
[19] | 赵秧秧, 高抒, 2015. 台风风暴潮影响下潮滩沉积动力模拟初探——以江苏如东海岸为例[J]. 沉积学报, 33(1): 79-90. |
ZHAO YANGYANG, GAO SHU, 2015. Simulation of tidal flat sedimentation in response to typhoon-induced storm surges: a case study from Rudong coast, Jiangsu, China[J]. Acta Sedimentologica Sinica, 33(1): 79-90. (in Chinese with English abstract) | |
[20] | 朱爱意, 吴常文, 赵向炯, 2006. 舟山近海紫贻贝生物学性状初步研究[J]. 浙江海洋学院学报(自然科学版), 25(1): 1-4. |
ZHU AIYI, WU CHANGWEN, ZHAO XIANGJIONG, 2006. Primary research on the biological characteristics of Mytilus edulis Linnaeus in Zhoushan costal area[J]. Journal of Zhejiang Ocean University (Natural Science), 25(1): 1-4. (in Chinese with English abstract) | |
[21] |
AUGUSTIN L N, IRISH J L, LYNETT P, 2009. Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation[J]. Coastal Engineering, 56(3): 332-340.
doi: 10.1016/j.coastaleng.2008.09.004 |
[22] |
BALKE T, FRIESS D A, 2016. Geomorphic knowledge for mangrove restoration: a pan-tropical categorization[J]. Earth Surface Processes and Landforms, 41(2): 231-239.
doi: 10.1002/esp.3841 |
[23] |
BESSET M, ANTHONY E J, BOUCHETTE F, 2019. Multi-decadal variations in delta shorelines and their relationship to river sediment supply: an assessment and review[J]. Earth-science reviews, 193: 199-219.
doi: 10.1016/j.earscirev.2019.04.018 |
[24] | BIRD E C F, 1984. Coasts: an introduction to coastal geomorphology[M]. 3rd ed. Oxford B. Blackwell. |
[25] | BREITBURG D L, COEN L D, LUCKENBACH M, et al, 2000. Oyster reef restoration: convergence of harvest and conservation strategies[J]. Journal of Shellfish Research, 19(1): 371-377. |
[26] | BRUUN P, 1962. Sea-level rise as a cause of shore erosion[J]. Journal of the Waterways and Harbors Division, 88(1): 117-130. |
[27] |
BYERS J E, GRABOWSKI J H, PIEHLER M F, et al, 2015. Geographic variation in intertidal oyster reef properties and the influence of tidal prism[J]. Limnology and Oceanography, 60(3): 1051-1063.
doi: 10.1002/lno.10073 |
[28] | CAO HAIJIN, CHEN YUJUN, TIAN YE, et al, 2016. Field investigation into wave attenuation in the mangrove environment of the South China Sea coast[J]. Journal of Coastal Research, 32(6): 1417-1427. |
[29] | CHANG YANG, CHEN YINING, LI YAN, 2019. Flow modification associated with mangrove trees in a macro-tidal flat, southern China[J]. Acta Oceanologica Sinica, 38(2): 1-10. |
[30] |
CHEN QIN, ZHAO HAIHONG, 2012. Theoretical models for wave energy dissipation caused by vegetation[J]. Journal of Engineering Mechanics, 138(2): 221-229.
doi: 10.1061/(ASCE)EM.1943-7889.0000318 |
[31] |
CHEN YINING, LI YAN, THOMPSON C, et al, 2018. Differential sediment trapping abilities of mangrove and saltmarsh vegetation in a subtropical estuary[J]. Geomorphology, 318: 270-282.
doi: 10.1016/j.geomorph.2018.06.018 |
[32] |
CHOWDHURY M S N, WALLES B, SHARIFUZZAMAN S M, et al, 2019. Oyster breakwater reefs promote adjacent mudflat stability and salt marsh growth in a monsoon dominated subtropical coast[J]. Scientific Reports, 9(1): 8549.
doi: 10.1038/s41598-019-44925-6 |
[33] | CHUNG C H, 1989. Ecological engineering of coastlines with salt marsh plantations[M]//MITSCH W J, JORGENSEN S E. Ecological engineering: an introduction to ecotechnology. New York: John Wiley: 255-290. |
[34] |
CHUNG C H, 1993. Thirty years of ecological engineering with Spartina plantations in China[J]. Ecological Engineering, 2(3): 261-289.
doi: 10.1016/0925-8574(93)90019-C |
[35] | COLWELL R K, RANGEL T F, 2009. Hutchinson's duality: the once and future niche[J]. Proceedings of the National Academy of Sciences of the United States of America, 106 Suppl 2(Suppl 2): 19651-19658. |
[36] | COOPER N J, 2005. Wave dissipation across intertidal surfaces in the Wash Tidal inlet, Eastern England[J]. Journal of Coastal Research, 21(1): 28-40. |
[37] | CORKAN R H, 1948. Storm surges: their importance in modern tidal science and some results of a recent investigation[J]. The Dock and Harbour Authority, 28(2): 3-19. |
[38] | DEAN R G, 2003. Beach nourishment: theory and practice[M]. New Jersey: World Scientific:420. |
[39] | DONNELLY C, KRAUS N, LARSON M, 2006. State of knowledge on measurement and modeling of coastal overwash[J]. Journal of Coastal Research, 22(4): 965-991. |
[40] |
EVANS G, 1965. Intertidal flat sediments and their environments of deposition in the Wash[J]. Quarterly Journal of the Geological Society, 121(1-4): 209-240.
doi: 10.1144/gsjgs.121.1.0209 |
[41] | FAGERSTROM J A, 1987. The evolution of reef communities[M]. New York: John Wiley and Sons. |
[42] | FAN DAIDU, 2012. Open-coast tidal flats[M]//DAVIS R A JR, DALRYMPLE R W. Principles of tidal sedimentology. Dordrecht: Springer: 187-230. |
[43] |
FARAONI V, 2020. On the extremization of wave energy dissipation rates in equilibrium beach profiles[J]. Journal of Oceanography, 76(6): 459-463.
doi: 10.1007/s10872-020-00556-4 |
[44] |
FIRTH L B, HARRIS D, BLAZE J A, et al, 2021. Specific niche requirements underpin multidecadal range edge stability, but may introduce barriers for climate change adaptation[J]. Diversity and Distributions, 27(4): 668-683.
doi: 10.1111/ddi.13224 |
[45] | FLEMMING B W, DAVIS R A JR, 1994. Holocene evolution, morphodynamics and sedimentology of the Spiekeroog Barrier Island system (southern North Sea)[J]. Senckenbergiana Maritima, 24(1): 117-155. |
[46] |
FLIERL G R, ROBINSON A R, 1972. Deadly surges in the bay of Bengal: dynamics and storm-tide tables[J]. Nature, 239(5369): 213-215.
doi: 10.1038/239213a0 |
[47] | FORRISTALL G Z, REECE A M, 1985. Measurements of wave attenuation due to a soft bottom: the SWAMP experiment[J]. Journal of Geophysical Research: Oceans, 90(C2): 3367-3380. |
[48] |
GAIN I E, BREWTON R A, ROBILLARD M M R, et al, 2017. Macrofauna using intertidal oyster reef varies in relation to position within the estuarine habitat mosaic[J]. Marine Biology, 164(1): 8.
doi: 10.1007/s00227-016-3033-5 |
[49] | GALTSOFF P S, 1964. The american oyster Crassostrea virginica gmelin[R]. Fishery Bulletin, 64, Washington: United States Government Printing Office: 1-480. |
[50] |
GAO SHU, COLLINS M, 1995. Net sand transport direction in a tidal inlet, using foraminiferal tests as natural tracers[J]. Estuarine, Coastal and Shelf Science, 40(6): 681-697.
doi: 10.1006/ecss.1995.0046 |
[51] | GAO SHU, COLLINS M, 1997. Formation of salt-marsh cliffs in an accretional environment, Christchurch Harbour, southern England[M]//WANG PINXIAN, BERGRAN W A. Marine geology and palaeoceanography. London: CRC Press: 95-110. |
[52] |
GAO SHU, 2009. Modeling the preservation potential of tidal flat sedimentary records, Jiangsu coast, eastern China[J]. Continental Shelf Research, 29(16): 1927-1936.
doi: 10.1016/j.csr.2008.12.010 |
[53] |
GAO SHU, DU YONGFEN, XIE WENJING, et al, 2014. Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines[J]. Science China Earth Sciences, 57(11): 2567-2586.
doi: 10.1007/s11430-014-4954-9 |
[54] | GAO SHU, 2019. Geomorphology and sedimentology of tidal flats[M]//PERILLO G M E, WOLANSKI E, CAHOON D R, et al. Coastal wetlands: an integrated ecosystem approach. 2nd ed. Amsterdam: Elsevier: 359-381. |
[55] | GOREAU T J, HIBERTZ W, AZEEZ A, 2013. Restoring reefs to grow back beaches and protect coasts from erosion and global sea-level rise[M]. In: Goreau T J, Trecnch R K (Eds), Innovative methods of marine ecosystem restoration. Boca Raton: CRC Press, 11-34. |
[56] | HASLETT S K, 2000. Coastal systems[M]. London: Routledge: 218 |
[57] | HILBERTZ W, HAKEEM A, SARKISIAN T, et al, 2013. Restoring reefs to grow back beaches and protect coasts from erosion and global sea-level rise[M]//GOREAU T J, TRENCH R K. Innovative methods of marine ecosystem restoration. Boca Raton: CRC Press: 11-34. |
[58] | HOLT R D, 2009. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives[J]. Proceedings of the National Academy of Sciences of the United States of America, 106 Suppl 2(Suppl 2): 19659-19665. |
[59] |
HORSTMAN E M, DOHMEN-JANSSEN C M, NARRA P M F, et al, 2014. Wave attenuation in mangroves: a quantitative approach to field observations[J]. Coastal Engineering, 94: 47-62.
doi: 10.1016/j.coastaleng.2014.08.005 |
[60] | HOUSER C, HILL P, 2010. Wave attenuation across an intertidal sand flat: implications for mudflat development[J]. Journal of Coastal Research, 26(3): 403-411. |
[61] | HUTCHINSON G E, 1965. The ecological theater and evolutionary play[M]. New Haven: Yale University Press. |
[62] | HUTCHINSON G E, 1978. An introduction to population biology[M]. New Haven: Yale University Press. |
[63] |
JADHAV R S, CHEN QIN, SMITH J M, 2013. Spectral distribution of wave energy dissipation by salt marsh vegetation[J]. Coastal Engineering, 77: 99-107.
doi: 10.1016/j.coastaleng.2013.02.013 |
[64] |
JEON T, SEO K -W, KIM B -H, et al, 2021. Sea level fingerprints and regional sea level change[J]. Earth and Planetary Science Letters, 567: 116985.
doi: 10.1016/j.epsl.2021.116985 |
[65] |
JEANSON M, DOLIQUE F, SEDRATI M, et al, 2016. Wave modifications across a coral reef: Cap Chevalier, Martinique Island[J]. Journal of Coastal Research, 75(10075): 582-586.
doi: 10.2112/SI75-117.1 |
[66] | KAMPHUIS J W, 2000. Introduction to coastal engineering and management[M]. Singapore: World Scientific. |
[67] | KEDDY P A, 2000. Wetland ecology: principles and conservation[M]. London: Cambridge University Press. |
[68] |
KELLER D A, GITTMAN R K, BRODEUR M C, et al, 2019. Salt marsh shoreline geomorphology influences the success of restored oyster reefs and use by associated fauna[J]. Restoration Ecology, 27(6): 1429-1441.
doi: 10.1111/rec.12992 |
[69] | KING C A M, 1972. Beaches and coasts[M]. 2nd ed. London: Edward Arnold. |
[70] | KOMAR P D, 1998. Beach processes and sedimentation[M]. 2nd ed. Upper Saddle River: Prentice Hall. |
[71] |
LARSON M, KRAUS N C, WISE R A, 1999. Equilibrium beach profiles under breaking and non-breaking waves[J]. Coastal Engineering, 36(1): 59-85.
doi: 10.1016/S0378-3839(98)00049-0 |
[72] |
LEE W K, TAY S H X, OOI S K, et al, 2021. Potential short wave attenuation function of disturbed mangroves[J]. Estuarine, Coastal and Shelf Science, 248: 106747.
doi: 10.1016/j.ecss.2020.106747 |
[73] |
LENTZ S J, CHURCHILL J H, DAVIS K A, et al, 2016. Surface gravity wave transformation across a platform coral reef in the Red Sea[J]. Journal of Geophysical Research: Oceans, 121(1): 693-705.
doi: 10.1002/2015JC011142 |
[74] |
LI RUNXIANG, YU QIAN, WANG YUNWEI, et al, 2018. The relationship between inundation duration and Spartina alterniflora growth along the Jiangsu coast, China[J]. Estuarine, Coastal and Shelf Science, 213: 305-313.
doi: 10.1016/j.ecss.2018.08.027 |
[75] | LIN HANGJIE, YU QIAN, DU ZHIYUN, et al, 2021. Geomorphology and sediment dynamics of the Liyashan oyster reefs, Jiangsu Coast, China[J]. Acta Oceanologica Sinica, 40(1): 1-8. |
[76] | LUCKENBACH M, MANN R L, WESSON J A, 1999. Oyster reef habitat restoration: a synopsis and synthesis of approaches[R]. Virginia: Virginia Institute of Marine Science Press. |
[77] | MALDONADO S, 2020. Do beach profiles under nonbreaking waves minimize energy dissipation?[J]. Journal of Geophysical Research: Oceans, 125(5): e2019JC015876. |
[78] |
MARSOOLI R, ORTON P M, MELLOR G, et al, 2017. A coupled circulation-wave model for numerical simulation of storm tides and waves[J]. Journal of Atmospheric and Oceanic Technology, 34(7): 1449-1467.
doi: 10.1175/JTECH-D-17-0005.1 |
[79] |
MCAFEE D, CONNELL S D, 2021a. The global fall and rise of oyster reefs[J]. Frontiers in Ecology and the Environment, 19(2): 118-125.
doi: 10.1002/fee.2291 |
[80] |
MCAFEE D, LARKIN C, CONNELL S D, 2021b. Multi-species restoration accelerates recovery of extinguished oyster reefs[J]. Journal of Applied Ecology, 58(2): 286-294.
doi: 10.1111/1365-2664.13719 |
[81] | MENDEZ F J, LOSADA I J, 2004. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields[J]. Coastal Engineering 51(2): 103-118. |
[82] | MITSCH W J, GOSSELINK J G, 2000. Wetlands[M]. 3rd ed. New York: John Wiley. |
[83] | MITSCH W J, JORGENSEN S E, 2003. Ecological engineering and ecosystem restoration[M]. New York: John Wiley & Sons. |
[84] |
MÖLLER I, SPENCER T, FRENCH J R, et al, 1999. Wave transformation over salt marshes: a field and numerical modelling study from North Norfolk, England[J]. Estuarine, Coastal and Shelf Science, 49(3): 411-426.
doi: 10.1006/ecss.1999.0509 |
[85] |
MÖLLER I, KUDELLA M, RUPPRECHT F, et al, 2014. Wave attenuation over coastal salt marshes under storm surge conditions[J]. Nature Geoscience, 7(10): 727-731.
doi: 10.1038/ngeo2251 |
[86] |
MONISMITH S G, ROGERS J S, KOWEEK D, et al, 2015. Frictional wave dissipation on a remarkably rough reef[J]. Geophysical Research Letters, 42: 4063-4071.
doi: 10.1002/2015GL063804 |
[87] |
MORRIS R L, KONLECHNER T M, GHISALBERTI M, et al, 2018. From grey to green: efficacy of eco-engineering solutions for nature-based coastal defence[J]. Global Change Biology, 24(5): 1827-1842.
doi: 10.1111/gcb.14063 |
[88] |
MORRIS R L, BILKOVIC D M, BOSWELL M K, et al, 2019. The application of oyster reefs in shoreline protection: are we over-engineering for an ecosystem engineer?[J]. Journal of Applied Ecology, 56(7): 1703-1711.
doi: 10.1111/1365-2664.13390 |
[89] | MULLARNEY J C, HENDERSON S M, 2010. Wave-forced motion of submerged single-stem vegetation[J]. Journal of Geophysical Research: Ocenans, 115(C12): C12061. |
[90] |
NEUMEIER U, AMOS C L, 2006. The influence of vegetation on turbulence and flow velocities in European salt-marshes[J]. Sedimentology, 53(2): 259-277.
doi: 10.1111/j.1365-3091.2006.00772.x |
[91] |
NELSON R C, 1994, Depth limited design wave heights in very flat regions[J]. Coastal Engineering, 23: 43-59.
doi: 10.1016/0378-3839(94)90014-0 |
[92] | O'DONNELL J E D, 2017. Living shorelines: a review of literature relevant to New England coasts[J]. Journal of Coastal Research, 33(2): 435-451. |
[93] |
OSORIO-CANO J D, ALCERRECA-HUERTA J C, MARINO-TAPIA I, et al, 2019. Effects of roughness loss on reef hydrodynamics and coastal protection: approaches in Latin America[J]. Estuaries and coasts, 42: 1742-1760.
doi: 10.1007/s12237-019-00584-4 |
[94] | PETHICK J S, 1996. The geomorphology of mudflats[M]// NORDSTROM K F, ROMAN C T. Estuarine shores. Chichester: Wiley: 185-211. |
[95] | RAJPAR M N, ZAKARIA M, 2014. Mangrove fauna of Asia[M]//FARIDAH-HANUM I, LATIFF A, HAKEEM K R, et al. Mangrove ecosystems of Asia: status, challenges and management strategies. New York: Springer: 153-197. |
[96] |
REED D J, 1988. Sediment dynamics and deposition in a retreating coastal salt marsh[J]. Estuarine, Coastal and Shelf Science, 26(1): 67-79.
doi: 10.1016/0272-7714(88)90012-1 |
[97] | REISE K, 2001. Ecological comparisons of sedimentary shores[M]. Berlin: Springer-Verlag: 384 |
[98] | REN M E, ZHANG R S, YANG J H, 1985. Effect of Typhoon No.8114 on coastal morphology and sedimentation of Jiangsu Province, the People's Republic of China[J]. Journal of Coastal Research, 1: 21-28. |
[99] |
REZEK R J, LEBRETON B, ROARK E B, et al, 2017. How does a restored oyster reef develop? An assessment based on stable isotopes and community metrics[J]. Marine Biology, 164(3): 54.
doi: 10.1007/s00227-017-3084-2 |
[100] |
RIDGE J T, RODRIGUEZ A B, FODRIE F J, 2017. Salt marsh and fringing oyster reef transgression in a shallow temperate estuary: implications for restoration, conservation and blue carbon[J]. Estuaries and Coasts, 40(4): 1013-1027.
doi: 10.1007/s12237-016-0196-8 |
[101] | RIFFE K C, HENDERSON S M, MULLARNEY J C, 2011. Wave dissipation by flexible vegetation[J]. Geophysical Research Letters, 38(18): L18607. |
[102] |
ROGERS J S, MONISMITH S G, KOWEEK D A, et al, 2016. Wave dynamics of a Pacific Atoll with high frictional effects[J]. Journal of Geophysical Research - Oceans, 121: 350-367.
doi: 10.1002/2015JC011170 |
[103] |
SAMIKSHA S V, VETHAMONY P, ROGERS W E, et al, 2017. Wave energy dissipation due to mudbanks formed off southwest coast of India[J]. Estuarine, Coastal and and Shelf Science, 196: 387-398.
doi: 10.1016/j.ecss.2017.07.018 |
[104] |
SÁNCHEZ-NÚÑEZ D A, PINEDA J E M, OSORIO A F, 2020. From local-to global-scale control factors of wave attenuation in mangrove environments and the role of indirect mangrove wave attenuation[J]. Estuarine, Coastal and Shelf Science, 245: 106926.
doi: 10.1016/j.ecss.2020.106926 |
[105] |
SCYPHERS S B, POWERS S P, HECK K L Jr, et al, 2011. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries[J]. PLoS One, 6(8): e22396.
doi: 10.1371/journal.pone.0022396 |
[106] | SHEREMET A, STONE G W, 2003. Observations of nearshore wave dissipation over muddy sea beds[J]. Journal of Geophysical Research: Oceans, 108(C11): 3357. |
[107] | SILVESTER R, HSU J R C, 1993. Coastal stablization: innovative concepts[M]. New Jersey: Prentice Hall. |
[108] |
SMITH J M, BRYANT M A, WAMSLEY T V, 2016. Wetland buffers: numerical modeling of wave dissipation by vegetation[J]. Earth Surface Processes and Landforms, 41(6) 847-854.
doi: 10.1002/esp.3904 |
[109] | SUNAMURA T, 1992. Geomorphology of rocky coasts[M]. Chichester: John Wiley. |
[110] | SVENDSEN I A, 2006. Introduction to nearshore hydrodynamics[M]. Singapore: World Scientific. |
[111] | TEMMERMAN S, BOUMA T J, GOVERS G, et al, 2005. Impact of vegetation on flow routing and sedimentation patterns: three-dimensional modeling for a tidal marsh[J]. Journal of Geophysical Research: Earth Surface, 110(F4): F04019. |
[112] |
TEMMERMAN S, MEIRE P, BOUMA T J, et al, 2013. Ecosystem-based coastal defence in the face of global change[J]. Nature, 504(7478): 79-83.
doi: 10.1038/nature12859 |
[113] |
THEUERKAUF S J, EGGLESTON D B, PUCKETT B J, et al, 2017. Wave exposure structures oyster distribution on natural intertidal reefs, but not on hardened shorelines[J]. Estuaries and Coasts, 40(2): 376-386.
doi: 10.1007/s12237-016-0153-6 |
[114] |
VAN PROOSDIJ D, OLLERHEAD J, DAVIDSON-ARNOTT R G D, 2000. Controls on suspended sediment deposition over single tidal cycles in a macrotidal saltmarsh, Bay of Fundy, Canada[J]. Geological Society, London, Special Publications, 175: 43-57.
doi: 10.1144/GSL.SP.2000.175.01.05 |
[115] |
VAN PROOSDIJ D, DAVIDSON-ARNOTT R G D, OLLERHEAD J, 2006. Controls on spatial patterns of sediment deposition across a macro-tidal salt marsh surface over single tidal cycles[J]. Estuarine, Coastal and Shelf Science, 69(1-2): 64-86.
doi: 10.1016/j.ecss.2006.04.022 |
[116] | VAN RIJN L C, 2011. Principles of fluid flow and surface waves in rivers, estuaries, seas and oceans[M]. Blokzijl: Aqua Publications. |
[117] | VAN STRAATEN L M J U, KUENEN P H, 1958. Tidal action as a cause of clay accumulation[J]. Journal of Sedimentary Research, 28(4): 406-413. |
[118] |
WALLES B, TROOST K, VAN DEN ENDE D, et al, 2016. From artificial structures to self-sustaining oyster reefs[J]. Journal of Sea Research, 108: 1-9.
doi: 10.1016/j.seares.2015.11.007 |
[119] |
WANG HONG, VAN STRYDONCK M, 1997. Chronology of Holocene cheniers and oyster reefs on the coast of Bohai Bay, China[J]. Quaternary Research, 47(2): 192-205.
doi: 10.1006/qres.1996.1865 |
[120] | WANG JIAN, BAI CHUNGUANG, XU YONGHUI, et al, 2010. Tidal couplet formation and preservation, and criteria for discriminating storm-surge sedimentation on the tidal flats of central Jiangsu Province, China[J]. Journal of Coastal Research, 26(5): 976-981. |
[121] |
WANG YAPING, ZHANG RENSHUN, GAO SHU, 1999. Geomorphic and hydrodynamic responses in salt marsh-tidal creek systems, Jiangsu, China[J]. Chinese Science Bulletin, 44(6): 544-549.
doi: 10.1007/BF02885545 |
[122] |
WANG YAPING, GAO SHU, JIA JIANJUN, et al, 2012. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China[J]. Marine Geology, 291-294: 147-161.
doi: 10.1016/j.margeo.2011.01.004 |
[123] |
WANG YING, KE XIANKUN, 1989. Cheniers on the east coastal plain of China[J]. Marine Geology, 90(4): 321-335.
doi: 10.1016/0025-3227(89)90134-5 |
[124] |
WANG YUNWEI, YU QIAN, GAO SHU, 2011. Relationship between bed shear stress and suspended sediment concentration: annular flume experiments[J]. International Journal of Sediment Research, 26(4): 513-523.
doi: 10.1016/S1001-6279(12)60009-2 |
[125] | WELLS N C, 2012. The atmosphere and ocean: a physical introduction[M]. 3rd ed. West Sussex: John Wiley: 424. |
[126] |
WIBERG P L, TAUBE S R, FERGUSON A E, et al, 2019. Wave attenuation by oyster reefs in shallow coastal bays[J]. Estuaries and Coasts, 42(2): 331-347.
doi: 10.1007/s12237-018-0463-y |
[127] |
WILLEMSEN P W J M, BORSJE B W, VUIK V, et al, 2020. Field-based decadal wave attenuating capacity of combined tidal flats and salt marshes[J]. Coastal Engineering, 156: 103628.
doi: 10.1016/j.coastaleng.2019.103628 |
[128] | WOODROFFE C D, 2002. Coasts: form, process and evolution[M]. New York: Cambridge University Press, 2002. |
[129] |
WOODROFFE C D, ROGERS K, MCKEE K L, et al, 2016. Mangrove sedimentation and response to relative sea-level rise[J]. Annual Review of Marine Science, 8: 243-266.
doi: 10.1146/annurev-marine-122414-034025 |
[130] |
YANG SHILUN, LUO XIANGXIN, TEMMERMAN S, et al, 2020. Role of delta-front erosion in sustaining salt marshes under sea-level rise and fluvial sediment decline[J]. Limnology and Oceanography, 65(9): 1990-2009.
doi: 10.1002/lno.11432 |
[131] |
YSEBAERT T, YANG SHILUN, ZHANG LIQUAN, et al, 2011. Wave attenuation by two contrasting ecosystem engineering salt marsh macrophytes in the intertidal pioneer zone[J]. Wetlands, 31(6): 1043-1054.
doi: 10.1007/s13157-011-0240-1 |
[132] | ZEDLER J B, 2001. Handbook for restoring tidal wetlands[M]. Boca Raton: CRC Press. |
[133] |
ZHANG RENSHUN, SHEN YONGMING, LU LIYU, et al, 2004. Formation of Spartina alterniflora salt marshes on the coast of Jiangsu Province, China[J]. Ecological Engineering, 23(2): 95-105.
doi: 10.1016/j.ecoleng.2004.07.007 |
[134] |
ZHAO YANGYANG, YU QIAN, WANG DANDAN, et al, 2017. Rapid formation of marsh-edge cliffs, Jiangsu coast, China[J]. Marine Geology, 385: 260-273.
doi: 10.1016/j.margeo.2017.02.001 |
[135] | ZIMMER B, 2006. Coral reef restoration: an overview[M]// PRECHT W F. Coral reef restoration handbook. Boca Raton, FL: CRC Press: 39-59. |
[1] | WU Hongbo, LUO Feng, CHEN Zhipeng, ZHU Fei, ZENG Jingwei, ZHANG Chi, LI Ruijie. A novel pattern for predicting the effects of mangrove ecological reconstruction [J]. Journal of Tropical Oceanography, 2024, 43(4): 86-97. |
[2] | DONG Junde, HUANG Xiaofang, LONG Aimin, WANG Youshao, LING Juan, YANG Qingsong. Progress on the nitrogen-fixing microorganisms and their ecological functions in mangroves [J]. Journal of Tropical Oceanography, 2023, 42(4): 1-11. |
[3] | HU Xuehong, ZHANG Li, ZHOU Yanwu, HE Weihong. Present situation and analysis of standards for coastal wetland ecological restoration in China [J]. Journal of Tropical Oceanography, 2020, 39(6): 131-139. |
[4] | LONG Lijuan, YANG Fangfang, WEI Zhangliang. A review on ecological restoration techniques of coral reefs [J]. Journal of Tropical Oceanography, 2019, 38(6): 1-8. |
[5] | Shuo YU, Jingping ZHANG, Lijun CUI, Zhijian JIANG, Ling ZHANG, Xiaoping HUANG. Preliminary study on seed-based restoration for Enhalus acoroides meadow [J]. Journal of Tropical Oceanography, 2019, 38(1): 49-54. |
|