Journal of Tropical Oceanography ›› 2018, Vol. 37 ›› Issue (6): 120-132.doi: 10.11978/2017130CSTR: 32234.14.2017130
• Marine Biology • Previous Articles Next Articles
Yao CHEN(), Xilu YANG, Xuejia HE(
)
Received:
2017-12-13
Online:
2018-11-20
Published:
2018-05-15
Supported by:
CLC Number:
Yao CHEN, Xilu YANG, Xuejia HE. Grazing of three common protozoan on brown tide alga Aureococcus anophagefferens[J].Journal of Tropical Oceanography, 2018, 37(6): 120-132.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
The experimental setup of three protozoan grazing on A. anophagefferens and I. galbana in mono-algal diet or in mixed diet"
实验 | 设置 | 摄食者 | 处理 | 饵料浓度/(mg C·L-1) |
---|---|---|---|---|
单种饵料生长 | 1 | 海洋尖尾藻 | 100%抑食金球藻 | 0.2、0.3、0.5、1.0、1.5、3.0 |
海洋尾丝虫 | ||||
扇形游仆虫 | ||||
2 | 海洋尖尾藻 | 100%球等鞭金藻 | 0.2、0.3、0.5、1.0、1.5、3.0 | |
海洋尾丝虫 | ||||
扇形游仆虫 | ||||
单种饵料摄食 | 3 | 海洋尖尾藻 | 100%抑食金球藻 | 0.2、0.3、0.5、1.0、1.5、3.0 |
海洋尾丝虫 | ||||
扇形游仆虫 | ||||
4 | 海洋尖尾藻 | 100%球等鞭金藻 | 0.2、0.3、0.5、1.0、1.5、3.0 | |
海洋尾丝虫 | ||||
扇形游仆虫 | ||||
混合饵料选择性摄食 | 5 | 海洋尖尾藻 | 抑食金球藻(指数期)∶球等鞭金藻为 80∶20、50∶50、20∶80 | 1.5 |
海洋尾丝虫 | ||||
扇形游仆虫 | ||||
6 | 海洋尖尾藻 | 抑食金球藻(稳定期)∶球等鞭金藻为 80∶20、50∶50、20∶80 | 1.5 | |
海洋尾丝虫 | ||||
扇形游仆虫 |
Tab. 3
Analysis of functional response of physiological variables, growth rate, and ingestion rate to prey concentration in three protozoa feeding on A. anophagefferens and I. galbana, respectively"
参数 | 摄食抑食金球藻 | 摄食球等鞭金藻 | ||||
---|---|---|---|---|---|---|
海洋尖尾藻 | 海洋尾丝虫 | 扇形游仆虫 | 海洋尖尾藻 | 海洋尾丝虫 | 扇形游仆虫 | |
μmax/(d-1) | 0.63±0.11 | 0.48±0.06 | 0.57±0.07 | 0.55±0.03 | 0.48±0.02 | 0.72±0.02 |
KGR/(mg C·L-1) | 0.38±0.26 | 0.50±0.25 | 0.20±0.18 | 0.08±0.05 | 0.17±0.05 | 0.06±0.02 |
r2 | 0.91 | 0.96 | 0.83 | 0.93 | 0.98 | 0.92 |
Imax/(ng C·grazer-1·d-1) | 0.64±0.15 | 3.04±0.74 | 167.64±25.01 | 1.76±0.50 | 11.83±3.49 | 329.33±75.92 |
KIR/(mg C·L-1) | 0.88±0.48 | 4.77±1.66 | 1.15±0.38 | 1.58±0.89 | 4.71±2.00 | 2.77±1.06 |
r2 | 0.86 | 0.99 | 0.95 | 0.89 | 0.98 | 0.96 |
GGEmax | 65.8%±13.0% | 35.2%±6.0% | 49.1%±14.6% | 43.3%±11.6% | 34.8%±5.4% | 76.5%±2.7% |
Tab. 4
Selectivity index for O. marina, U. marinum, and E. vannus feeding on mixtures of cells of A. anophagefferens at different growth phases and I. galbana"
摄食组 | 比例 | 饵料 | 抑食金球藻指数期 | 抑食金球藻稳定期 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FR | Ivlev's index | Jacob's index | 摄食行为 | FR | Ivlev's index | Jacob's index | 摄食行为 | |||||
lgQ | D | lgQ | D | |||||||||
海洋尖尾藻 | 80∶20 | 抑食金球藻 | 1.136 | 0.064 | 0.396 | 0.427 | + | 0.997 | -0.003 | -0.007 | -0.008 | 0 |
球等鞭金藻 | 0.456 | -0.374 | -0.396 | -0.427 | - | 1.013 | 0.006 | 0.007 | 0.008 | 0 | ||
50∶50 | 抑食金球藻 | 1.655 | 0.247 | 0.681 | 0.655 | + | 0.104 | -0.812 | -1.263 | -0.896 | - | |
球等鞭金藻 | 0.345 | -0.487 | -0.681 | -0.655 | - | 1.896 | 0.309 | 1.263 | 0.896 | + | ||
20∶80 | 抑食金球藻 | 2.935 | 0.492 | 0.755 | 0.701 | + | 0.917 | -0.044 | -0.047 | -0.054 | 0 | |
球等鞭金藻 | 0.516 | -0.319 | -0.755 | -0.701 | - | 1.021 | 0.010 | 0.047 | 0.054 | 0 | ||
海洋尾丝虫 | 80∶20 | 抑食金球藻 | 1.061 | 0.030 | 0.148 | 0.169 | + | 0.916 | -0.044 | -0.164 | -0.187 | - |
球等鞭金藻 | 0.755 | -0.140 | -0.148 | -0.169 | - | 1.336 | 0.144 | 0.164 | 0.187 | + | ||
50∶50 | 抑食金球藻 | 1.125 | 0.059 | 0.109 | 0.125 | + | 0.599 | -0.251 | -0.369 | -0.401 | - | |
球等鞭金藻 | 0.875 | -0.066 | -0.109 | -0.125 | - | 1.401 | 0.167 | 0.369 | 0.401 | + | ||
20∶80 | 抑食金球藻 | 2.964 | 0.495 | 0.765 | 0.707 | + | 0.198 | -0.670 | -0.783 | -0.717 | - | |
球等鞭金藻 | 0.509 | -0.325 | -0.765 | -0.707 | - | 1.201 | 0.091 | 0.783 | 0.717 | + | ||
扇形游仆虫 | 80∶20 | 抑食金球藻 | 1.125 | 0.059 | 0.351 | 0.384 | + | 0.494 | -0.338 | -0.786 | -0.719 | - |
球等鞭金藻 | 0.501 | -0.332 | -0.351 | -0.384 | - | 3.023 | 0.503 | 0.786 | 0.719 | + | ||
50∶50 | 抑食金球藻 | 1.201 | 0.092 | 0.177 | 0.201 | + | 0.889 | -0.059 | -0.097 | -0.111 | 0 | |
球等鞭金藻 | 0.799 | -0.112 | -0.177 | -0.201 | - | 1.111 | 0.053 | 0.097 | 0.111 | 0 | ||
20∶80 | 抑食金球藻 | 1.575 | 0.223 | 0.265 | 0.296 | + | 0.973 | -0.014 | -0.015 | -0.017 | 0 | |
球等鞭金藻 | 0.856 | -0.077 | -0.265 | -0.296 | - | 1.007 | 0.003 | 0.015 | 0.017 | 0 |
[1] | 公晗, 颜天, 周名江, 2014. 褐潮藻Aureococcus anophagefferens的危害研究进展[J]. 海洋科学, 38(6): 78-84. |
GONG HAN, YAN TIAN, ZHOU MINGJIANG, 2014. Advance in study of the impacts of Aureococcus anophagefferens[J]. Marine Sciences, 38(6): 78-84 (in Chinese with English abstract). | |
[2] | 雷蕾, 姚鹏, 2016. 抑食金球藻褐潮环境影响因素研究进展[J]. 海洋环境科学, 35(4): 635-640. |
LEI LEI, YAO PENG, 2016. Advances in the environmental factors of brown tide of Aureococcus anophagefferens[J]. Marine Environmental Science, 35(4): 635-640 (in Chinese with English abstract). | |
[3] | 乔玲, 甄毓, 米铁柱, 2016. 抑食金球藻(Aureococcus anophagefferens)褐潮研究概述[J]. 海洋环境科学, 35(3): 473-480. |
QIAO LING, ZHEN YU, MI TIEZHU, 2016. Review of the brown tides caused by Aureococcus anophagefferens[J]. Marine Environmental Science, 35(3): 472-480 (in Chinese with English abstract). | |
[4] | 宋广军, 宋轮, 王年斌, 等, 2014. 褐潮研究现状[J]. 河北渔业, (9): 61-64. |
SONG GUANGJUN, SONG LUN, WANG NIANBIN, et al, 2014. The present research status of brown tide[J]. Hebei Fisheries, (9): 61-64 (in Chinese with English abstract). | |
[5] | 宋伦, 吴景, 宋永刚, 等, 2017. 褐潮致灾种抑食金球藻在辽东湾的分布[J]. 环境科学研究, 30(4): 537-544. |
SONG LUN, WU JING, SONG YONGGANG, et al, 2017. Distribution of brown tide species Aureococcus anophagefferens in Liaodong Bay[J]. Research of Environmental Sciences, 30(4): 537-544 (in Chinese with English abstract). | |
[6] | BERNARD C, RASSOULZADEGAN F, 1990. Bacteria or microflagellates as a major food source for marine ciliates: possible implications for the microzooplankton[J]. Marine Ecology Progress Series, 64: 147-155. |
[7] | BRECKELS M N, ROBERTS E C, ARCHER S D, et al, 2011. The role of dissolved infochemicals in mediating predator-prey interactions in the heterotrophic dinoflagellate Oxyrrhis marina[J]. Journal of Plankton Research, 33(4): 629-639. |
[8] | BRICELJ V M, FISHER N S, GUCKERT J B, et al, 1989. Lipid composition and nutritional value of the brown tide alga Aureococcus anophagefferens[M]//COSPER E M, BRICELJ V M, CARPENTER E J. Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Berlin, Heidelberg: Springer: 85-100. |
[9] | BRICELJ V M, LONSDALE D J, 1997. Aureococcus anophagefferens: causes and ecological consequences of brown tides in U.S. mid-Atlantic coastal waters[J]. Limnology and Oceanography, 42(5 Part2): 1023-1038. |
[10] | BRUSSAARD C P D, MARIE D, THYRHAUG R, et al, 2001. Flow cytometric analysis of phytoplankton viability following viral infection[J]. Aquatic Microbial Ecology, 26(2): 157-166. |
[11] | BUSKEY E J, HYATT C J, 1995. Effects of the Texas (USA) ‘brown tide’ alga on planktonic grazers[J]. Marine Ecology Progress Series, 126: 285-292. |
[12] | BUSKEY E J, MONTAGNA P A, AMOS A F, et al, 1997. Disruption of grazer populations as a contributing factor to the initiation of the Texas brown tide algal bloom[J]. Limnology and Oceanography, 42(5 Part2): 1215-1222. |
[13] | CARON D A, GOBLER C J, LONSDALE D J, et al, 2004. Microbial herbivory on the brown tide alga, Aureococcus anophagefferens: results from natural ecosystems, mesocosms and laboratory experiments[J]. Harmful Algae, 3(4): 439-457. |
[14] | CARON D A, LIM E L, KUNZE H, et al, 1989. Trophic interactions between nano- and microzooplankton and the “brown tide”[M]//COSPER E M, BRICELJ V M, CARPENTER E J. Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Berlin, Heidelberg: Springer: 265-294. |
[15] | CAVANAUGH G M, 1956. Formulae and methods of the marine biological laboratory chemical room[M]. 6th ed. Woods Hole, Massachusetts: Marine Biological Laboratory: 67-69. |
[16] | DEMOTT W R, WATSON M D, 1991. Remote detection of algae by copepods: responses to algal size, odors and motility[J]. Journal of Plankton Research, 13(6): 1203-1222. |
[17] | DEONARINE S N, GOBLER C J, LONSDALE D J, et al, 2006. Role of zooplankton in the onset and demise of harmful brown tide blooms (Aureococcus anophagefferens) in US mid-Atlantic estuaries[J]. Aquatic Microbial Ecology, 44: 181-195. |
[18] | DEUER S M, GRÜNBAUM D, 2006. Individual foraging behaviors and population distributions of a planktonic predator aggregating to phytoplankton thin layers[J]. Limnology and Oceanography, 51(1): 109-116. |
[19] | DODGE J D, CRAWFORD R M, 1971. Fine structure of the dinoflagellate Oxyrrhis marina. II. The flagellar system[J]. Protistologica, 7: 399-409. |
[20] | DODGE J D, CRAWFORD R M, 1974. Fine structure of the dinoflagelate Oxyrrhis marina III. Phagotrophy[J]. Protistologica, 10: 239-244. |
[21] | EVANS C, KADNER S V, DARROCH L J, et al, 2007. The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: an Emiliania huxleyi culture study[J]. Limnology and Oceanography, 52(3): 1036-1045. |
[22] | EVANS C, MALIN G, MILLS G P, et al, 2006. Viral infection of Emiliania huxleyi (Prymnesiophyceae) leads to elevated production of reactive oxygen species[J]. Journal of Phycology, 42(5): 1040-1047. |
[23] | EVANS C, WILSON W H, 2008. Preferential grazing of Oxyrrhis marina on virus infected Emiliania huxleyi[J]. Limnology and Oceanography, 53(5): 2035-2040. |
[24] | FENCHEL T, 1980. Suspension feeding in ciliated protozoa: functional response and particle size selection[J]. Microbial Ecology, 6(1): 1-11. |
[25] | FLYNN K J, DAVIDSON K, CUNNINGHAM A, 1996. Prey selection and rejection by a microflagellate; implications for the study and operation of microbial food webs[J]. Journal of Experimental Marine Biology and Ecology, 196(1-2): 357-372. |
[26] | FROST B W, 1972. Effects of size and concentration of food particles on the Feeding behavior of the marine planktonic copepod Calanus pacificus[J]. Limnology and Oceanography, 17(6): 805-815. |
[27] | GENTLEMAN W, LEISING A, FROST B, et al, 2003. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 50(22-26): 2847-2875. |
[28] | GOBLER C J, DEONARINE S, LEIGH-BELL J, et al, 2004. Ecology of phytoplankton communities dominated by Aureococcus anophagefferens: the role of viruses, nutrients, and microzooplankton grazing[J]. Harmful Algae, 3(4): 471-483. |
[29] | GOBLER C J, RENAGHAN M J, BUCK N J, 2002. Impacts of nutrients and grazing mortality on the abundance of Aureococcus anophagefferens during a New York brown tide Bloom[J]. Limnology and Oceanography, 47(1): 129-141. |
[30] | HANSEN F C, WITTE H J, PASSARGE J, 1996. Grazing in the heterotrophic dinoflagellate Oxyrrhis marina: size selectivity and preference for calcified Emiliania huxleyi cells[J]. Aquatic Microbial Ecology, 10(3): 307-313. |
[31] | HANSEN P J, BJØRNSEN P K, HANSEN B W, 1997. Zooplankton grazing and growth: Scaling within the 2-2, -μm body size range[J]. Limnology and Oceanography, 42(4): 687-704. |
[32] | HEINBOKEL J F, 1978. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures[J]. Marine Biology, 47(2): 177-189. |
[33] | IVLEV V S, 1961. Experimental ecology of the feeding of fishes[M]. New Haven: The University Press of Yale. |
[34] | JACOBS J, 1974. Quantitative measurement of food selection: a modification of the forage ratio and Ivlev's electivity index[J]. Oecologia, 14(4): 413-417. |
[35] | JEONG H J, KANG H, SHIM J H, et al, 2001. Interactions among the toxic dinoflagellate Amphidinium carterae, the heterotrophic dinoflagellate Oxyrrhis marina, and the calanoid copepods Acartia spp.[J]. Marine Ecology Progress Series, 218: 77-86. |
[36] | JEONG H J, KIM J S, YOO Y D, et al, 2003. Feeding by the heterotrophic dinoflagellate Oxyrrhis marina on the red-tide raphidophyte Heterosigma akashiwo: a potential biological method to control red tides using mass-cultured grazers[J]. Journal of Eukaryotic Microbiology, 50(4): 274-282. |
[37] | JEONG H J, SEONG K A, YOO Y D, et al, 2008. Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria[J]. Journal of Eukaryotic Microbiology, 55(4): 271-288. |
[38] | JEONG H J, YOO Y D, KIM J S, et al, 2004. Feeding by the marine planktonic ciliate Strombidinopsis jeokjo on common heterotrophic dinoflagellates[J]. Aquatic Microbial Ecology, 36(2): 181-187. |
[39] | JONSSON P R, 1986. Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina)[J]. Marine Ecology Progress Series, 33: 265-277. |
[40] | JONSSON P R, TISELIUS P, 1990. Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates[J]. Marine Ecology Progress Series, 60: 35-44. |
[41] | KANG Y, KOCH F, GOBLER C J, 2015. The interactive roles of nutrient loading and zooplankton grazing in facilitating the expansion of harmful algal blooms caused by the pelagophyte, Aureoumbra lagunensis, to the Indian River Lagoon, FL, USA[J]. Harmful Algae, 49: 162-173. |
[42] | KELLER M D, BELLOWS W K, GUILLARD R R L, 1989. Dimethylsulfide production and marine phytoplankton: an additional impact of unusual blooms[M]//COSPER E M, BRICELJ V M, CARPENTER E J. Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Berlin, Heidelberg: Springer: 101-105. |
[43] | LIU H B, BUSKEY E J, 2000a. The exopolymer secretions (EPS) layer surrounding Aureoumbra lagunensis cells affects growth, grazing, and behavior of protozoa[J]. Limnology and Oceanography, 45(5): 1187-1191. |
[44] | LIU HONGBIN, BUSKEY E J, 2000b. Hypersalinity enhances the production of extracellular polymeric substance (EPS) in the Texas brown tide alga, Aureoumbra lagunensis (Pelagophyceae)[J]. Journal of Phycology, 36(1): 71-77. |
[45] | LONSDALE D J, COSPER E M, KIM W S, et al, 1996. Food web interactions in the plankton of Long Island bays, with preliminary observations on brown tide effects[J]. Marine Ecology Progress Series, 134: 247-263. |
[46] | MALEJ A, HARRIS R P, 1993. Inhibition of copepod grazing by diatom exudates: a factor in the development of mucus aggregates?[J]. Marine Ecology Progress Series, 96: 33-42. |
[47] | MARTEL C M, 2006. Prey location, recognition and ingestion by the phagotrophic marine dinoflagellate Oxyrrhis marina[J]. Journal of Experimental Marine Biology and Ecology, 335(2): 210-220. |
[48] | MEHRAN R, 1996. Effects of Aureococcus anophagefferens on microzooplankton grazing and growth rates in the Peconic Bays system, Long Island, NY[D]. New York: State University of New York at Stony Brook. |
[49] | MENDEN-DEUER S, LESSARD E J, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton[J]. Limnology and Oceanography, 45(3): 569-579. |
[50] | PASSOW U, ALLDREDGE A L, 1995. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP)[J]. Limnology and Oceanography, 40(7): 1326-1335. |
[51] | PASSOW U, ALLDREDGE A L, 1999. Do transparent exopolymer particles (TEP) inhibit grazing by the euphausiid Euphausia pacifica?[J]. Journal of Plankton Research, 21(11): 2203-2217. |
[52] | PROBYN T, PITCHER G, PIENAAR R, et al, 2001. Brown tides and mariculture in Saldanha Bay, South Africa[J]. Marine Pollution Bulletin, 42(5): 405-408. |
[53] | ROBERTS E C, WOOTTON E C, DAVIDSON K, et al, 2011. Feeding in the dinoflagellate Oxyrrhis marina: linking behaviour with mechanisms[J]. Journal of Plankton Research, 33(4): 603-614. |
[54] | SIEBURTH J M, JOHNSON P W, 1989. Picoplankton ultrastructure: A decade of preparation for the brown tide alga, Aureococcus anophagefferens[M]//COSPER E M, BRICELJ V M, CARPENTER E J. Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Berlin, Heidelberg: Springer: 1-21. |
[55] | SMAYDA T J, 2008. Complexity in the eutrophication-harmful algal bloom relationship, with comment on the importance of grazing[J]. Harmful Algae, 8(1): 140-151. |
[56] | TUORTO S J, TAGHON G L, 2014. Rates of benthic bacterivory of marine ciliates as a function of prey concentration[J]. Journal of Experimental Marine Biology and Ecology, 460: 129-134. |
[57] | TURLEY C M, NEWEL R C, ROBINS D B, 1986. Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions[J]. Marine Ecology Progress Series, 33: 59-70. |
[1] | HONG Yiguo, WU Jiapeng. Progress of anaerobic oxidation of methane by archaea in the cold seep of deep Sea [J]. Journal of Tropical Oceanography, 2021, 40(3): 76-82. |
[2] | LIU Yugeng, MAO Yingjin, ZHANG Canchuan, GAO Beile. Functional study of coupling protein CheV and CZB domain of chemoreceptors in the Epsilon-proteobacteria chemotaxis signaling pathway [J]. Journal of Tropical Oceanography, 2021, 40(2): 27-38. |
[3] | CHEN Yao, YANG Xilu, HE Xuejia. Grazing of three common protozoan on brown tide alga Aureococcus anophagefferens [J]. Journal of Tropical Oceanography, 2018, 37(6): 120-132. |
[4] | ZHOU Lin-bin, TAN Ye-hui, HUANG Liang-min. Negative phytoplankton growth rates in dilution experiments and the possible causes [J]. Journal of Tropical Oceanography, 2013, 32(1): 48-54. |
[5] | LI Kai-zhi, TAN Ye-hui, HUANG Liang-min, YIN Jian-qiang, SONG Xing-yu, ZHANG Jian-lin. Feeding of planktonic copepods in the Pearl River Estuary [J]. Journal of Tropical Oceanography, 2012, 31(6): 90-96. |
[6] | LONG Jian-jun,HUANG Wei,ZOU Da-peng,DI Peng-fei,WU Jin-ping. Method of measuring bubble flow from cool seeps on seafloor using acoustic transmission and preliminary experiments [J]. Journal of Tropical Oceanography, 2012, 31(5): 100-105. |
|