Journal of Tropical Oceanography >
The source of glycerol dibiphytanyl glycerol tetraethers and temperature reconstruction since 8.2 ka in the central Okinawa Trough
Copy editor: LIN Qiang
Received date: 2019-09-18
Request revised date: 2020-03-10
Online published: 2020-04-16
Supported by
National Natural Science Foundation of China(41473080)
Qingdao National Laboratory for Marine Science and Technology(QNLM2016ORP0210)
Copyright
The wide occurrence of isoprenoid glycerol dibiphytanyl glycerol tetraethers (isoGDGTs) and its sensitivity to temperature in marine environments proved to be suitable for paleo-climate studies. The Okinawa Trough (OT), under the control of multiple climate patterns and various sediment origins, is a natural laboratory for paleo-climate study since the Holocene. Here, we studied isoGDGTs composition and characteristics, applied outspread tetraether index of tetraethers consisting of 86 carbons (TEXH86 index), tried to identify the source of isoGDGTs, and quantificationally discussed sea surface temperature (SST) of the central OT for the past 8.2 ka BP. By calculating the Methane Index and the branched isoprenoid tetraether (BIT) indexes, we found isoGDGTs mainly came from Thaumarchaeota, and are suitable for TEXH86 appliance. TEXH86 SST of column C14 revealed a range of 21.6-27.2 °C during 8.2 ka BP. Changes in SSTs of the central OT were primarily controlled by the western tropical Pacific Ocean and low-latitude winter insolation. The warming TEXH86 SSTs in the central OT were decoupled from the descending East Asian summer monsoon intensity in the last 8.2 ka BP. The widely recorded cold event at 7.4-6.6 ka BP was magnified in GDGTs related SST. We attributed it to the well-known Kikai-Akahoya tephra (~7.3 ka BP).
LIU Lei , XU Lanfang , GUAN Hongxiang , SUN Zhilei , WANG Libo , MAO Shengyi , LIU Lihua , WU Nengyou . The source of glycerol dibiphytanyl glycerol tetraethers and temperature reconstruction since 8.2 ka in the central Okinawa Trough[J]. Journal of Tropical Oceanography, 2020 , 39(6) : 77 -92 . DOI: 10.11978/2019090
图1 本研究检测到的异戊二烯和支链类甘油二烷基甘油四醚类化合物结构(Schouten et al, 2013;Yang et al, 2015)GDGT-0至GDGT-4, Crenarchaeol(泉古菌醇)和其异构体Crenarchaeol regio isomer是isoGDGTs, 主要由古菌生产; 其余为支链GDGTs (brGDGTs)和其异构体, 主要由细菌生产 Fig. 1 Structures of isoprenoid glycerol dibiphytanyl glycerol tetraethers (isoGDGTs) and branched GDGTs (brGDGTs) observed in this study, revised after Schouten et al (2013) and Yang et al (2015). GDGT-0, -1, -2, -3, -4, and Crenarchaeol (Crenarchaeol regio isomer) belong to isoGDGTs and mainly come from the archaea; the rest are brGDGTs (and their regio isomers) and mainly sourced from the bacteria |
表1 文中用到的指标的定义式Tab. 1 Definitions of various proxies used in this article |
指标定义* | 合理范围 | 来源 | |
---|---|---|---|
$\text{TE}{{\text{X}}_{86}}=\frac{\text{( }\!\![\!\!\text{ GDGT-2 }\!\!]\!\!\text{ + }\!\![\!\!\text{ GDGT-3 }\!\!]\!\!\text{ + }\!\![\!\!\text{ Crenarchaeol regio isomer }\!\!]\!\!\text{ )}}{\text{( }\!\![\!\!\text{ GDGT-1 }\!\!]\!\!\text{ + }\!\![\!\!\text{ GDGT-2 }\!\!]\!\!\text{ + }\!\![\!\!\text{ GDGT-3 }\!\!]\!\!\text{ + }\!\![\!\!\text{ Crenarchaeol regio isomer }\!\!]\!\!\text{ )}}$ | Schouten et al, 2002 | ||
$\text{TEX}_{\text{86}}^{\text{H}}=\log (\text{TE}{{\text{X}}_{86}})$ | >15℃ | Kim et al, 2010 | |
$\text{TEX}_{\text{86}}^{\text{L}}=\log \left( \frac{\text{ }\!\![\!\!\text{ GDGT-2 }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ GDGT-1 }\!\!]\!\!\text{ + }\!\![\!\!\text{ GDGT-2 }\!\!]\!\!\text{ + }\!\![\!\!\text{ GDGT-3 }\!\!]\!\!\text{ }} \right)$ | <15℃ | Kim et al, 2010 | |
$\text{BIT}=\frac{\text{ }\!\![\!\!\text{ GDGT-Ia }\!\!]\!\!\text{ + }\!\![\!\!\text{ GDGT-IIa }\!\!]\!\!\text{ + }\!\![\!\!\text{ GDGT-IIIa }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ GDGT-Ia }\!\!]\!\!\text{ + }\!\![\!\!\text{ GDGT-IIa }\!\!]\!\!\text{ + }\!\![\!\!\text{ GDGT-IIIa }\!\!]\!\!\text{ + }\!\![\!\!\text{ Crenarchaeol }\!\!]\!\!\text{ }}$ | <0.4 | Hopmans et al, 2004 | |
$\text{MI}=\frac{\text{ }\!\![\!\!\text{ GDGT-1 }\!\!]\!\!\text{ + }\!\![\!\!\text{ GDGT-2 }\!\!]\!\!\text{ + }\!\![\!\!\text{ GDGT-3 }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ GDGT-1 }\!\!]\!\!\text{ + }\!\![\!\!\text{ GDGT-2 }\!\!]\!\!\text{ + }\!\![\!\!\text{ GDGT-3 }\!\!]\!\!\text{ + }\!\![\!\!\text{ Crenarchaeol }\!\!]\!\!\text{ + }\!\![\!\!\text{ Crenarchaeol regio isomer }\!\!]\!\!\text{ }}$ | <0.3 | Zhang et al, 2011 | |
$\text{ }\!\!%\!\!\text{ GDGT-2}=\frac{\text{GDGT-2}}{\text{ }\!\![\!\!\text{ GDGT-1 }\!\!]\!\!\text{ + }\!\![\!\!\text{ GDGT-2 }\!\!]\!\!\text{ + }\!\![\!\!\text{ GDGT-3 }\!\!]\!\!\text{ + }\!\![\!\!\text{ Crenarchaeol regio isomer }\!\!]\!\!\text{ }}$ | <45 | Sinninghe Damsté et al, 2012 | |
[GDGT-0] / [Crenarchaeol] | <2 | Blaga et al, 2009 | |
[GDGT-2] / [Crenarchaeol] | <0.4 | Weijers et al, 2011 |
*上述各公式中出现的GDGTs的结构详见 |
图2 研究区地理位置和洋流变化图a. 研究区地理位置图(Machida, 1999; Dou et al, 2010); 日本九州及其周围的火山根据Machida(1999)修改, 红五角星代表C14站位, 选取了中国南部的董哥洞和西热带太平洋的MD98-2176(图右上角小图中的红点)作为对比(Stott et al, 2004; Dykoski et al, 2005); 同时还收集了冲绳海槽中部A7和DGKS9604站位(Sun et al, 2005; Yu et al, 2009), 南部OKI-151和OKT-3站位(图中红实心圈)的古温度数据(Zhao et al, 2015; Xu et al, 2018)。b. 研究区年平均海温和每个季节的平均海温随深度变化情况. c. 研究区特定深度的月平均海温变化情况。b和c中TEXH86温度为沉积柱最表层样的温度, cm bsf表示海底以下以cm为单位的深度; b、c数据来自https://odv.awi.de/data/ocean/ world-ocean-atlas-2013/ Fig. 2 Location of the core C14 and its current variations. a) Location of the core C14 (red star) in the OT, and collected paleoenvironmental data from Dongge Cave in southern China (Dykoski et al, 2005), core MD98-2176 in the western tropical Pacific (Stott et al, 2004), cores A7 (Sun et al, 2005), and DGKS9604 in the central OT (Yu et al, 2009), and cores OKT-3 (Zhao et al, 2015) and OKI-151 (Xu et al, 2018) in the southern OT (red dots). Seasonal (b) and monthly (c) mean water temperatures at different depths at the study site. Core-top TEXH86 temperature was used in Figs. 2b and 2c. Unit cm bsf represents the depth in centimeters below the seabed. Data of (b) and (c) are from https://odv.awi.de/data/ocean/world-ocean- atlas -2013/ |
表2 冲绳海槽中部C14沉积柱有孔虫AMS14C年龄Tab. 2 14C-AMS ages from core C14 in the central Okinawa Trough |
Beta实验室编号 | 深度/(cm bsf) | 平均深度/(cm bsf ) | 有孔虫种类 | 传统14C年龄/(a BP) | 2σ校正年龄/(a BP) | 平均校正年龄/(a BP) |
---|---|---|---|---|---|---|
498910 | 35~37.5b | 36.25 | G.ruber, G.sacculifer | 1100±30 a | 616—730 | 673 |
498912 | 155~157.5b | 156.25 | G.ruber, G.sacculifer | 2330±30 | 1858—2045 | 1951.5 |
498914 | 365~367.5b | 366.25 | G.ruber,,G.sacculifer | 4790±30 | 4943—5227 | 5085 |
498915 | 455~457.5c | 456.25 | G.ruber, G.sacculifer | 6280±30 | 6831—6646 | 6738.5 |
498916 | 545~547.5c | 546.25 | G.ruber, G.sacculifer | 6940±30 | 7520—7385 | 7452.5 |
498917 | 575~577.5c | 576.25 | G.ruber, G.sacculifer | 7780±30 | 8170—8327 | 8248.5 |
注: a. “±30”为测试差; b. 未发表数据; c. 本文数据。所有年龄数据皆为日历年龄 |
表3 冲绳海槽C14柱状沉积物中GDGTs含量百分比、各指标及TEXH86海表面温度数据Tab. 3 The percentage of GDGTs, indexes used to evaluate the application of TEX86 and TEXH86 SST in core C14 |
注: *[x]表示GDGT-x,为isoGDGTs,结构见图l; **Cren表示crenarchaeol,是isoGDGTs的一种; ***Cren'表示crenarchaeol regio isomer,结构见 |
图4 C14站位TEXH86温度、OKI-151(Xu et al, 2018)和OKT-3(Zhao et al, 2015)站位TEXH86 SST以及DGKS9604(Yu et al, 2009)站位UK’37 SST对比Fig. 4 Comparison of TEXH86 temperatures in C14 with TEXH86 SSTs from OKI-151(Xu et al, 2018) and OKT-3 (Zhao et al, 2015) of the southern OT, and UK’37 SST from DGKS9604 of the central OT (Yu et al, 2009) |
图5 冲绳海槽地区不同指标揭示的古温度记录a. 8.2ka BP以来海平面变化(Liu et al, 2004); b. C14站位的TEXH86 SST记录; c. MD98-2195站位的Mg/Ca SST记录(Kubota et al, 2010); d. A7站位Mg/Ca SST记录(Sun et al, 2005); e. OKI-151站位TEXH86 SST记录(Xu et al, 2018); f. OKT-3站位的Mg/Ca(红)、UK’37(蓝)和TEXH86(黑)SST记录(Zhao et al, 2015); g. 西太平洋MD98-2176站位Mg/Ca SST记录(Stott et al, 2004); h. 北冰洋冰芯GIPS2的δ18O记录(Stuiver et al, 2000); i. A7站位的沉积物粒度指标Af2指标(Zheng et al, 2016) Fig. 5 Collected paleo-temperature records. a) Postglacial sea-level changes in the western Pacific (Liu et al, 2004); b) TEXH86 SST in this study; c) Mg/Ca SST at site MD98-2195 (Kubota et al, 2010); d) Mg/Ca SST at site A7 (Sun et al, 2005); e) TEXH86 SST at site OKI-151(Xu et al, 2018); f) Mg/Ca (red line), UK’37 (blue line) and TEXH86 (black line) SSTs at site OKT-3 (Zhao et al, 2015); g) MD98-2176 Mg/Ca SST in the western tropical Pacific (Stott et al,2004); h) δ18O record from GISP2 ice core (Stuiver et al, 2000); i) sediment particle size index AF2 at site A7 (Zheng et al, 2016) |
图6 C14站位的温度记录与其他指标的对比a. 董哥洞的δ18O 记录, 绿色来自Wang 等(2005)、红色来自Dykoski 等(2005); b. 东亚夏季风湿度记录(Wang et al., 2010); c. 30°N夏季日晒强度记录(Berger et al, 1991); d. 赤道0°冬季日晒强度记录(Berger et al, 1991); e. 本文的TEXH86 SST记录 Fig. 6 Comparison of mean annual SST variation from core C14 with other paleoclimate data. a) δ18O records from the Dongge Cave stalagmites, China (green: Wang et al, 2005; red: Dykoski et al, 2005); b) the synthesized East Asian summer monsoon (EASM) moisture indexes (Wang et al, 2010); c) summer (June) insolation at 30°N (Berger et al, 1991); d) winter (December) insolation at 0° (equator) (Berger et al, 1991); e) TEXH86 SST of site C14 |
[1] |
窦衍光, 陈晓辉, 李军, 等, 2018. 东海外陆架-陆坡-冲绳海槽不同沉积单元底质沉积物成因及物源分析[J]. 海洋地质与第四纪地质, 38(4):21-31.
|
[2] |
葛黄敏, 张传伦,
|
[3] |
徐烨, 常凤鸣, 李铁刚, 等, 2019. 中全新世冲绳海槽北部的水文气候变化: 浮游有孔虫群落证据[J]. 海洋地质与第四纪地质, 39(1):113-123.
|
[4] |
赵京涛, 李军, 窦衍光, 等, 2016. 海洋古温标研究新进展及其在冲绳海槽区的应用[J]. 海洋地质与第四纪地质, 36(1):123-132.
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
/
〈 | 〉 |