Journal of Tropical Oceanography >
Tidal wave propagation dynamics in Lingdingyang Bay-Humen outlet-tidal channel of the Pearl River
Copy editor: YAO Yantao
Received date: 2020-07-22
Revised date: 2020-10-23
Online published: 2020-10-25
Supported by
National Key Research and Development Program of China(2016YFC0402600)
National Natural Science Foundation of China(51979296)
National Natural Science Foundation of China(41476073)
Science and Technology Program of Guangzhou(202002030452)
Copyright
The Lingdingyang Bay-Humen outlet-tidal channel of the Pearl River is a typical geomorphic structure in the networks-bay system of the Pearl River Estuary. Tidal wave propagation in the channel is significantly influenced by the channel convergence in the estuary, the conversion effect at Humen outlet, the divergence of the tidal channel, and the riverbed friction. Thus, the spatio-temporal variation of the tidal regime is rather complex. Based on the daily high and low tidal levels from gauging stations along thetidal channel from 1990 to 2016, tidal amplitude gradient and wave celerity of different tidal constituents are computed using harmonic constants (i.e., tidal amplitude and phase of different tidal constituents) extracted from a standard harmonic analysis, and tidal wave propagation characteristics are investigated. The results show that the annual increase in amplitude and wave celerity gradients of the diurnal constituents (the amplitude gradients of K1 and O1 being 9% and 18%, respectively; both wave celerity being 1.4%) in Lingdingyang Bay were larger than those of the semi-diurnal tides (the amplitude gradients of M2 and S2 being 3% and 6%, respectively; both the wave celerity being 1%). The tidal waves changed abruptly due to the substantial variation in morphology. The change-points of the tidal wave celerity in Lingdingyang Bay and tidal channel were in 2009 and 2000, respectively. The relationship between wave celerity and tidal amplitude gradient changed considerably after the abrupt change.
XIE Meifang , ZHANG Ping , YANG Hao , FU Linxi , WANG Heng , CAI Huayang , YANG Qingshu . Tidal wave propagation dynamics in Lingdingyang Bay-Humen outlet-tidal channel of the Pearl River[J]. Journal of Tropical Oceanography, 2021 , 40(4) : 1 -13 . DOI: 10.11978/2020076
表1 1990—2016年潮位(相对珠江基面)统计量Tab. 1 Statistics of tidal level data (relative to the Pearl River datum) during 1990-2016 |
站点名称 | 简称 | 潮位/m | ||||
---|---|---|---|---|---|---|
平均值 | 标准差 | 最大值 | 最小值 | |||
赤湾 | CW | -0.19 | 0.80 | 2.32 | -2.04 | |
泗盛围 | SSW | -0.02 | 0.91 | 2.64 | -1.81 | |
黄埔 | HP | -0.02 | 0.92 | 2.70 | -1.83 |
图2 赤湾站、泗盛围站和黄埔站主要天文分潮(M2、S2、K1和O1)的振幅和相位变化图Fig. 2 Temporal variation in amplitude and phase for the main tidal constituents (M2, S2, K1, O1) in CW, SSW and HP gauge stations |
表2 1990—2016年不同站点的分潮振幅和相位统计量Tab. 2 Statistics of tidal amplitude and phase during 1990-2016 |
调和常数 | 分潮 | 赤湾 | 泗盛围 | 黄埔 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 最大值 | 最小值 | 极差 | 平均值 | 标准差 | 最大值 | 最小值 | 极差 | 平均值 | 标准差 | 最大值 | 最小值 | 极差 | |||
振幅/m | M2 | 0.57 | 0.02 | 0.60 | 0.52 | 0.08 | 0.69 | 0.03 | 0.77 | 0.66 | 0.11 | 0.71 | 0.03 | 0.78 | 0.66 | 0.12 | |
K1 | 0.42 | 0.01 | 0.44 | 0.41 | 0.03 | 0.43 | 0.01 | 0.45 | 0.42 | 0.03 | 0.41 | 0.01 | 0.43 | 0.39 | 0.04 | ||
O1 | 0.34 | 0.01 | 0.35 | 0.32 | 0.03 | 0.34 | 0.01 | 0.35 | 0.32 | 0.03 | 0.32 | 0.01 | 0.34 | 0.30 | 0.04 | ||
S2 | 0.22 | 0.01 | 0.24 | 0.21 | 0.03 | 0.25 | 0.01 | 0.28 | 0.24 | 0.04 | 0.25 | 0.01 | 0.27 | 0.23 | 0.04 | ||
相位/° | M2 | -61 | 2 | -55 | -66 | 11 | -1 | 5 | 8 | -10 | 18 | 26 | 6 | 36 | 17 | 19 | |
K1 | -53 | 1 | -50 | -56 | 6 | -23 | 4 | -19 | -30 | 11 | -7 | 4 | -1 | -13 | 12 | ||
O1 | -105 | 1 | -102 | -106 | 4 | -75 | 4 | -70 | -82 | 12 | -59 | 4 | -53 | -65 | 12 | ||
S2 | -28 | 3 | -22 | -33 | 11 | 36 | 6 | 46 | 26 | 20 | 65 | 6 | 75 | 56 | 19 |
表3 不同站点主要分潮振幅及相位的MK趋势检验结果Tab. 3 MK trend test results of tidal amplitude and phase for the main tidal constituents at different gauge stations |
潮位站 | 分潮 | 振幅 | 相位 | ||||
---|---|---|---|---|---|---|---|
年变化量/cm | Z值 | p值 | 年变化量/° | Z值 | p值 | ||
赤湾 | M2 | -0.10 | -1.67 | 0.09 | -0.04 | -0.42 | 0.68 |
K1 | -0.04 | -1.79 | 0.07 | -0.03 | -0.88 | 0.38 | |
O1 | -0.03 | -0.92 | 0.36 | -0.05 | -2.25 | 0.02 | |
S2 | -0.04 | -2.21 | 0.03 | -0.10 | -1.50 | 0.13 | |
泗盛围 | M2 | 0.21 | 2.67 | <0.01 | -0.64 | -6.59 | <0.01 |
K1 | 0.07 | 3.17 | <0.01 | -0.44 | -5.71 | <0.01 | |
O1 | 0.08 | 3.04 | <0.01 | -0.42 | -5.96 | <0.01 | |
S2 | 0.11 | 4.25 | <0.01 | -0.72 | -6.63 | <0.01 | |
黄埔 | M2 | 0.28 | 5.09 | <0.01 | -0.78 | -6.67 | <0.01 |
K1 | 0.05 | 1.58 | 0.11 | -0.48 | -6.21 | <0.01 | |
O1 | 0.05 | 1.67 | 0.09 | -0.51 | -6.00 | <0.01 | |
S2 | 0.12 | 5.38 | <0.01 | -0.79 | -6.71 | <0.01 |
注: 加粗字体表示变化显著, 显著性水平为0.01 |
图3 不同区段主要分潮的振幅梯度和传播速度变化图Fig. 3 Variation of tidal amplitude gradient and wave celerity at different sections |
表4 不同区段主要分潮振幅梯度和传播速度的MK趋势检验结果Tab. 4 MK trend test results of tidal amplitude gradient and wave celerity for the main tidal constituents at different sections |
区段 | 分潮 | 振幅梯度 | 传播速度 | |||||
---|---|---|---|---|---|---|---|---|
年变化量/(×10-8m-1) | Z值 | p值 | 年变化量/(m·s-1) | Z值 | p值 | |||
伶仃洋河口湾 | M2 | 8.46 | 5.59 | <0.01 | 0.09 | 5.09 | <0.01 | |
K1 | 3.94 | 4.59 | <0.01 | 0.11 | 5.59 | <0.01 | ||
O1 | 4.57 | 3.88 | <0.01 | 0.10 | 5.46 | <0.01 | ||
S2 | 11.6 | 5.21 | <0.01 | 0.08 | 4.92 | <0.01 | ||
潮汐通道 | M2 | 2.92 | 1.63 | 0.10 | 0.03 | 3.46 | <0.01 | |
K1 | -0.61 | -0.38 | 0.71 | 0.02 | 2.29 | 0.02 | ||
O1 | -0.81 | -0.38 | 0.71 | 0.02 | 2.04 | 0.04 | ||
S2 | 2.10 | 0.63 | 0.53 | 0.02 | 1.63 | 0.10 | ||
总程 | M2 | 6.83 | 5.55 | <0.01 | 0.07 | 5.71 | <0.01 | |
K1 | 2.90 | 3.04 | <0.01 | 0.07 | 5.71 | <0.01 | ||
O1 | 2.89 | 2.08 | 0.04 | 0.07 | 5.50 | <0.01 | ||
S2 | 8.28 | 4.96 | <0.01 | 0.06 | 5.13 | <0.01 |
注: 加粗字体表示变化显著, 显著性水平为0.01 |
图4 总程M2分潮振幅梯度(a、b)及传播速度(c、d)的MK检验a和c为趋势分析; b和 d为突变检验。黑色虚线表示总程潮波传播特征值的突变年份; 图b、d中紫色虚线表示显著性水平为0.01时的Z值 Fig. 4 MK tests for tidal amplitude gradient (a, b) and wave celerity (c, d) of M2 tide along the channel. The black dashed vertical line indicates the abrupt year for the tidal regime shift for the whole estuary |
图5 伶仃洋河口湾与潮汐通道潮波振幅梯度(a)和传播速度(b)的差值逐年变化黑色虚线表示两区段间分潮振幅梯度(或传播速度)差值的突变年份(2005年) Fig. 5 Temporal difference of tidal amplitude gradient (a) and wave celerity (b) between two sections. The black dashed vertical line indicates the year of the abrupt difference in tidal amplitude gradient (or wave velocity) between the two sections |
表5 2005年前、后不同区段间潮波振幅梯度和传播速度的平均差值Tab. 5 Averaged difference of tidal amplitude gradient and wave celerity between two sections before and after 2005 |
分潮 | 振幅梯度平均差值/(×10-6m-1) | 传播速度平均差值/(m·s-1) | |||
---|---|---|---|---|---|
2005年前 | 2005年后 | 2005年前 | 2005年后 | ||
M2 | 2.04 | 3.24 | 0.46 | 1.30 | |
K1 | 1.95 | 2.56 | 1.33 | 2.82 | |
O1 | 1.72 | 2.72 | 1.48 | 2.85 | |
S2 | 2.36 | 3.81 | 0.21 | 1.25 |
图6 伶仃洋河口湾(a、b)和潮汐通道(c、d)M2分潮传播速度的MK检验a和c为趋势分析; b和d为突变检验。黑色虚线表示相应的突变年份; 图b和d中的紫色虚线表示显著性水平为0.01是的Z值; 图c中红色虚线框表示潮汐通道的异变点, 红色粗虚线表示潮汐通道的异变年份 Fig. 6 MK tests for wave celerity of M2 tide at Lingdingyang Bay (a, b) and tidal channel (c, d). The black dashed vertical line indicates the abrupt change year. The red dashed box indicates the Change-points of the tidal channel. |
表6 不同区段潮波振幅梯度和传播速度突变前、后的变化Tab. 6 Alterations in tidal amplitude gradient and wave celerity at different sections before and after the abrupt change year |
区段 | 分潮 | 特征值 | 平均值 | 标准差 | 最大值 | 最小值 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
突变前 | 突变后 | 突变前 | 突变后 | 突变前 | 突变后 | 突变前 | 突变后 | ||||
伶仃洋河口湾 | M2 | δ/(×10-6m-1) | 3.09 | 4.20 | 0.58 | 0.33 | 4.54 | 4.79 | 2.43 | 3.68 | |
c/(m·s-1) | 7.49 | 8.86 | 0.43 | 0.30 | 8.31 | 9.25 | 6.82 | 8.41 | |||
K1 | δ/(×10-6m-1) | 0.29 | 0.77 | 0.37 | 0.28 | 0.84 | 1.04 | -0.35 | 0.27 | ||
c/(m·s-1) | 7.59 | 9.43 | 0.44 | 0.48 | 8.44 | 10.03 | 7.01 | 8.66 | |||
O1 | δ/(×10-6m-1) | -0.13 | 0.56 | 0.54 | 0.32 | 0.58 | 0.98 | -1.06 | 0.10 | ||
c/(m·s-1) | 7.24 | 8.99 | 0.45 | 0.46 | 8.21 | 9.64 | 6.57 | 8.33 | |||
S2 | δ/(×10-6m-1) | 1.55 | 3.07 | 0.69 | 0.69 | 2.44 | 3.98 | 0.35 | 2.04 | ||
c/(m·s-1) | 7.31 | 8.58 | 0.39 | 0.44 | 7.98 | 9.22 | 6.80 | 8.00 | |||
潮汐通道 | M2 | δ/(×10-6m-1) | 0.36 | 1.19 | 0.42 | 0.60 | 1.08 | 2.11 | -0.26 | 0.16 | |
c/(m·s-1) | 6.69 | 7.33 | 0.15 | 0.42 | 6.93 | 8.11 | 6.46 | 6.37 | |||
K1 | δ/(×10-6m-1) | -1.93 | -1.67 | 0.33 | 0.62 | -1.44 | -0.76 | -2.48 | -2.81 | ||
c/(m·s-1) | 5.86 | 6.41 | 0.20 | 0.48 | 6.06 | 7.41 | 5.52 | 5.76 | |||
O1 | δ/(×10-6m-1) | -2.30 | -1.90 | 0.37 | 0.78 | -1.60 | -0.77 | -2.90 | -3.35 | ||
c/(m·s-1) | 5.30 | 5.97 | 0.19 | 0.51 | 5.55 | 7.19 | 5.03 | 5.17 | |||
S2 | δ/(×10-6m-1) | -1.52 | -0.61 | 0.33 | 0.82 | -1.07 | 0.71 | -2.12 | -1.83 | ||
c/(m·s-1) | 6.79 | 7.21 | 0.20 | 0.45 | 7.13 | 8.21 | 6.47 | 6.32 |
表7 伶仃洋河口湾和潮汐通道地形参数变化Tab. 7 Topographic variation of Lingdingyang Bay and tidal channel |
区段 | 年份 | 容积/(×106m3) | 表面积/(×106m2) | 平均水深/m | 最大水深/m | 宽深比 |
---|---|---|---|---|---|---|
伶仃洋河口湾 | 1996 | 5434.22 | 1077.75 | 5.04 | 24.19 | 23.52 |
2016 | 6100.34 | 966.82 | 6.31 | 24.57 | 18.71 | |
潮汐通道 | 1996 | 1912.85 | 179.61 | 10.65 | 24.35 | 5.34 |
2016 | 1888.34 | 174.50 | 10.82 | 25.91 | 5.22 |
[1] |
邓俊杰, 包芸, 2009. 近十年伶仃洋地形变化及虎门潮汐潮流特征对比分析[C]// 中国力学学会学术大会'2009论文摘要集. 郑州: 中国力学学会(in Chinese).
|
[2] |
丁芮, 陈学恩, 曲念东, 2016. 珠江口及邻近海域潮汐环流数值模拟Ⅱ——河口水交换和物质输运分析[J]. 中国海洋大学学报, 46(7):1-10.
|
[3] |
龚文平, 刘欢, 任杰, 等, 2012. 黄茅海河口潮波的传播特征与机理研究[J]. 海洋学报, 34(3):41-54.
|
[4] |
胡德礼, 杨清书, 吴超羽, 等, 2010. 珠江网河水沙分配变化及其对伶仃洋水沙场的影响[J]. 水科学进展, 21(1):69-76.
|
[5] |
胡德礼, 吴超羽, 贾良文, 2011. 珠江河口对外海潮波响应的固有频率研究——采用系统控制论方法[J]. 海洋学报, 33(4):29-37.
|
[6] |
贾良文, 罗章仁, 杨清书, 等, 2006. 大量采沙对东江下游及东江三角洲河床地形和潮汐动力的影响[J]. 地理学报, 61(9):985-994.
|
[7] |
李春初, 2004. 中国南方河口过程与演变规律[M]. 北京: 科学出版社 (in chinese).
|
[8] |
李静, 2006. 珠江三角洲网河近20年河床演变特征分析[J]. 水利水电科技进展, 26(3):15-17, 20.
|
[9] |
李孟国, 韩志远, 李文丹, 等, 2019. 伶仃洋滩槽演变与水沙环境研究进展[J]. 海洋湖沼通报, (5):20-33.
|
[10] |
林祖亨, 梁舜华, 1996. 珠江口水域的潮流分析[J]. 海洋通报, 15(2):11-12.
|
[11] |
刘欢, 吴超羽, 包芸, 2011. 珠江河口的能量传播和能量耗散[J]. 热带海洋学报, 30(3):16-23.
|
[12] |
刘伟峰, 孙英兰, 陈时俊, 等, 2008. 胶南东部近岸海域实测海流分析及潮流场数值模拟[J]. 海洋科学, 32(8):9-12.
|
[13] |
欧素英, 杨清书, 2004. 珠江三角洲网河区径流潮流相互作用分析[J]. 海洋学报, 26(1):125-131.
|
[14] |
欧素英, 田枫, 郭晓娟, 等, 2016. 珠江三角洲径潮相互作用下潮能的传播和衰减[J]. 海洋学报, 38(12):1-10.
|
[15] |
申其国, 谢凌峰, 王亚妮, 2017. 近年珠江三角洲潮流特征变化分析[J]. 人民珠江, 38(7):13-17.
|
[16] |
王世俊, 2019. 伶仃洋水沙变化及对铜鼓航道回淤的影响研究[J]. 人民珠江, 40(4):1-7.
|
[17] |
姚海元, 扬懿, 查雅平, 等, 2018. 深中通道隧道埋深和口门宽度论证[J]. 公路, 63(12):330-334.
|
[18] |
张蔚, 严以新, 诸裕良, 等, 2008. 人工采沙及航道整治对珠江三角洲水流动力条件的影响[J]. 水利学报, 39(9):1098-1104.
|
[19] |
张蔚, 严以新, 郑金海, 等, 2010. 珠江三角洲年际潮差长期变化趋势[J]. 水科学进展, 21(1):77–83.
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
/
〈 | 〉 |