Journal of Tropical Oceanography >
Morphological characteristics of hypocotyls with different fresh weights of Kandelia obovata and their effects on the seedling growth
Copy editor: LIN Qiang
Received date: 2021-09-19
Revised date: 2021-12-22
Online published: 2021-12-27
Supported by
Programs of Science and Technology on Basic Resources Survey for the Ministry of Science and Technology of China(2017FY100701)
Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding(2016C02056-9)
In order to explore the phenotypic traits and nutrient contents of different fresh weights of Kandelia obovata hypocotyls and their effects on the growth of seedlings, and to determine the quality standard of hypocotyls in Zhejiang Province and improve the quality of forestation, we collected 6 groups of hypocotyls with different fresh weights (4.0~5.0g, 5.0~6.0g, 6.0~7.0g, 7.0~8.0g, 8.0~9.0g, 9.0~10.0g) to determine their phenotypic traits, nutrient contents and growth characteristics of seedlings. The results showed that the hypocotyl length, transverse diameter, and apical diameter increased significantly with the increase of fresh weight of hypocotyls. The percentage content of nitrogen (N), phosphorus (P), potassium (K), and organic carbon in the hypocotyl were not significantly different among the hypocotyls of different fresh weight, but with the increase of fresh weight of hypocotyls, the percentage content of starch decreased significantly. The total nutrient content in a single hypocotyl increased significantly with the increase of fresh weight of hypocotyls. The values of C:N, N:P and C:P of hypocotyl in fresh weight grade 7.0~8.0 were significantly higher than those in other fresh weight grades. The growth height, basal diameter, leaf number and biomass of seedlings increased significantly with the increase of fresh weight of hypocotyls, but between 5.0~6.0, 6.0~7.0 and 7.0~8.0, the stem biomass, leaf biomass, net biomass and the total biomass of seedlings are not significant. The correlation between hypocotyl phenotypic traits and seedling growth indicators was significant (P < 0.05). Except that the correlation between total P content and growth height was not significant, there was a significant positive correlation between the total N, K, Na, organic carbon, starch content and the growth indicators of seedlings (P < 0.05). The results of principal component analysis and comprehensive evaluation showed that the hypocotyls with fresh weight above 7.0g were better than those of other fresh weights. The regression analysis R2 of growth height, net biomass and hypocotyl fresh weight of K. obovata seedlings were 0.978 and 0.951, respectively, with P < 0.01. When the hypocotyl fresh weight was higher than 5.22g, the growth height of seedlings increased sharply. When the hypocotyl fresh weight was higher than 8.74g, the growth of net biomass of seedlings accelerated. The higher the fresh weight of the hypocotyls of K. obovata, the higher the nutrient content, the more conducive to the growth of seedlings. In the planting of K. obovata in Zhejiang Province, hypocotyls with fresh weight above 7.0g should be selected with priority.
LIU Shuangshuang , YANG Sheng , LIU Xing , CHEN Qiuxia , WANG Jinwang , GUO Jinmin , WANG Jiayu , WANG Wenqing , WU Weizhi , LIANG Licheng , ZHANG Xiaowei . Morphological characteristics of hypocotyls with different fresh weights of Kandelia obovata and their effects on the seedling growth[J]. Journal of Tropical Oceanography, 2022 , 41(6) : 56 -66 . DOI: 10.11978/2021127
表1 不同鲜重等级胚轴的形态特征指标Tab. 1 Morphological characteristics of different fresh weight grades of hypocotyls |
胚轴鲜重等级 | 鲜重/g | 长度/cm | 横径/mm | 顶径/mm | 干重/g |
---|---|---|---|---|---|
4.0~5.0g | 4.46±0.04a | 13.94±0.12a | 8.69±0.09a | 4.69±0.03a | 1.66±0.03a |
5.0~6.0g | 5.48±0.04b | 14.75±0.16b | 9.42±0.08b | 4.96±0.03b | 2.15±0.04b |
6.0~7.0g | 6.48±0.04c | 15.13±0.14b | 10.37±0.07c | 5.14±0.03c | 2.53±0.03c |
7.0~8.0g | 7.43±0.04d | 15.76±0.17c | 10.79±0.08d | 5.43±0.04d | 2.91±0.03d |
8.0~9.0g | 8.47±0.04e | 16.69±0.18d | 11.31±0.09e | 5.49±0.06d | 3.37±0.05e |
9.0~10.0g | 9.45±0.04f | 16.49±0.18d | 12.02±0.08f | 5.82±0.04e | 3.96±0.04f |
注: 上标不同小写字母表示不同胚轴鲜重等级间差异显著(P<0.05) |
表2 不同鲜重等级胚轴的营养成分百分含量Tab. 2 Nutrient percentage content of different fresh weight grades of hypocotyls |
胚轴鲜重等级 | N含量/% | P含量/% | K含量/% | Na含量/(mg·g-1) | 有机碳含量/% | 淀粉含量/(mg·g-1) |
---|---|---|---|---|---|---|
4.0~5.0g | 0.79±0.02c | 0.08±0.00d | 0.70±0.66c | 5.65±0.01d | 42.86±0.44ab | 332.51±11.99bc |
5.0~6.0g | 0.80±0.01c | 0.07±0.00bc | 0.66±0.64b | 5.93±0.02e | 47.53±0.77bc | 341.77±4.85c |
6.0~7.0g | 0.77±0.00bc | 0.06±0.00ab | 0.65±0.63ab | 5.97±0.04e | 43.84±0.20b | 314.97±2.31bc |
7.0~8.0g | 0.73±0.02ab | 0.05±0.00a | 0.62±0.59a | 5.51±0.07c | 51.58±3.69c | 310.23±5.71b |
8.0~9.0g | 0.71±0.18a | 0.06±0.00bc | 0.67±0.63b | 4.93±0.06a | 46.94±1.34bc | 254.83±6.64a |
9.0~10.0g | 0.77±0.01c | 0.07±0.01cd | 0.66±0.64b | 5.16±0.04b | 37.78±2.40a | 250.89±17.74a |
注: 上标不同小写字母表示不同胚轴鲜重等级间差异显著(P<0.05) |
表3 不同鲜重等级胚轴的个体平均营养成分含量Tab. 3 Nutrient content of different fresh weight grades of hypocotyls |
胚轴鲜重等级 | N含量/mg | P含量/mg | K含量/mg | Na含量/mg | 有机碳含量/mg | 淀粉含量/mg |
---|---|---|---|---|---|---|
4.0~5.0g | 13.10±0.35a | 1.26±0.02a | 11.69±0.30a | 9.38±0.02a | 711.37±7.33a | 549.71±14.09a |
5.0~6.0g | 17.28±0.12b | 1.41±0.06a | 14.23±0.22b | 12.76±0.05b | 1021.81±16.47b | 730.87±8.60b |
6.0~7.0g | 19.47±0.09c | 1.42±0.03a | 16.42±0.16c | 15.10±0.11c | 1109.25±5.10b | 793.27±4.61b |
7.0~8.0g | 21.22±0.60d | 1.49±0.04a | 17.91±0.25d | 16.02±0.21d | 1500.85±107.42c | 900.89±10.69c |
8.0~9.0g | 24.04±0.60e | 2.15±0.11b | 22.48±0.52e | 16.61±0.20e | 1581.97±45.05c | 866.52±20.93c |
9.0~10.0g | 30.66±0.30f | 2.83±0.27c | 26.25±0.40f | 20.45±0.16f | 1495.92±94.85c | 1000.86±47.96d |
注: 上标不同小写字母表示不同胚轴鲜重等级间差异显著(P<0.05) |
表4 不同鲜重等级胚轴的营养成分组成比例Tab. 4 The proportion of nutrient content of different fresh weight grades of hypocotyls |
胚轴鲜重等级 | C:N | N:P | C:P | K:Na |
---|---|---|---|---|
4.0~5.0g | 54.42±1.10ab | 10.36±0.12a | 562.98±6.24a | 1.25±0.03b |
5.0~6.0g | 59.13±0.90b | 12.40±0.59bc | 735.32±44.83b | 1.12±0.02a |
6.0~7.0g | 56.97±0.28b | 13.70±0.31cd | 780.43±18.54b | 1.09±0.01a |
7.0~8.0g | 70.30±3.17c | 14.35±0.76d | 1019.51±97.27c | 1.12±0.05a |
8.0~9.0g | 66.10±2.95c | 11.26±0.30ab | 746.91±48.64b | 1.36±0.01c |
9.0~10.0g | 48.78±3.02a | 11.31±1.00ab | 550.05±57.24a | 1.28±0.02b |
注: 上标不同小写字母表示不同胚轴鲜重等级间差异显著(P<0.05) |
表5 不同鲜重等级胚轴的秋茄幼苗生长表现Tab. 5 The seedling growth of Kandelia obovata of different fresh weight grades of hypocotyls |
胚轴鲜重 等级 | 生长高/cm | 基径/mm | 叶片数/ (片·株-1) | 根干重/g | 茎干重/g | 叶干重/g | 胚轴干重/g | 净生物量/g | 总生物量/g |
---|---|---|---|---|---|---|---|---|---|
4.0~5.0g | 11.08±0.29a | 5.88±0.13a | 7.23±0.19a | 0.87±0.11a | 0.86±0.13a | 1.41±0.16a | 1.84±0.08a | 3.14±0.36a | 4.98±0.42a |
5.0~6.0g | 14.53±0.33b | 6.52±0.12b | 8.10±0.23b | 1.37±0.12bc | 1.24±0.09b | 2.13±0.10b | 2.61±0.08b | 4.74±0.23b | 7.35±0.30b |
6.0~7.0g | 16.50±0.37c | 7.18±0.11c | 8.18±0.17b | 0.77±0.14a | 1.19±0.09ab | 2.09±0.21b | 2.53±0.09b | 4.05±0.41ab | 6.58±0.50b |
7.0~8.0g | 16.90±0.38c | 7.69±0.10d | 8.83±0.20b | 1.04±0.15ab | 1.27±0.15b | 2.19±0.14b | 2.98±0.06c | 4.50±0.37b | 7.48±0.42b |
8.0~9.0g | 17.23±0.32cd | 8.04±0.09e | 10.23±0.43c | 1.55±0.12cd | 1.83±0.12c | 3.06±0.15c | 3.58±0.10d | 6.44±0.31c | 10.02±0.37c |
9.0~10.0g | 18.18±0.42d | 8.51±0.11f | 12.28±0.42d | 1.85±0.18d | 2.23±0.14d | 3.57±0.20d | 4.18±0.13e | 7.64±0.41d | 11.82±0.44d |
注: 上标不同小写字母表示不同胚轴鲜重等级间差异显著(P<0.05) |
表6 秋茄胚轴与幼苗生长性状间的相关系数Tab. 6 The correlation coefficient between hypocotyls and seedling growing traits of Kandelia obovata |
鲜重 | 长度 | 横径 | 顶径 | N | P | K | Na | 有机碳 | 淀粉 | C:N | N:P | C:P | K:Na | 生长高 | 基径 | 净生物量 | 总生物量 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
鲜重 | 1 | 0.972** | 0.994** | 0.990** | 0.976** | 0.890* | 0.985** | 0.970** | 0.928** | 0.947** | 0.039 | 0.066 | 0.062 | 0.443 | 0.913* | 0.994** | 0.908* | 0.935** |
长度 | 1 | 0.960** | 0.946** | 0.909* | 0.814* | 0.942** | 0.911* | 0.968** | 0.909* | 0.221 | 0.090 | 0.172 | 0.473 | 0.908* | 0.970** | 0.877* | 0.903* | |
横径 | 1 | 0.989** | 0.970** | 0.856* | 0.970** | 0.983** | 0.924** | 0.962** | 0.042 | 0.152 | 0.110 | 0.359 | 0.944** | 0.998** | 0.874* | 0.904* | ||
顶径 | 1 | 0.977** | 0.868* | 0.967** | 0.983** | 0.926** | 0.975** | 0.041 | 0.147 | 0.115 | 0.347 | 0.923** | 0.991** | 0.887* | 0.918** | |||
N | 1 | 0.939** | 0.986** | 0.980** | 0.844* | 0.938** | -0.152 | 0.011 | -0.078 | 0.401 | 0.882* | 0.960** | 0.942** | 0.960** | ||||
P | 1 | 0.953** | 0.855* | 0.687 | 0.767 | -0.347 | -0.331 | -0.382 | 0.632 | 0.683 | 0.837* | 0.965** | 0.961** | |||||
K | 1 | 0.953** | 0.862* | 0.902* | -0.105 | -0.079 | -0.105 | 0.526 | 0.858* | 0.962** | 0.954** | 0.969** | ||||||
Na | 1 | 0.878* | 0.980** | -0.052 | 0.203 | 0.085 | 0.245 | 0.951** | 0.977** | 0.877* | 0.906* | |||||||
有机碳 | 1 | 0.924** | 0.401 | 0.279 | 0.392 | 0.318 | 0.914* | 0.947** | 0.773 | 0.812* | ||||||||
淀粉 | 1 | 0.114 | 0.340 | 0.263 | 0.144 | 0.968** | 0.968** | 0.822* | 0.859* | |||||||||
C:N | 1 | 0.529 | 0.877* | -0.142 | 0.182 | 0.102 | -0.187 | -0.145 | ||||||||||
N:P | 1 | 0.867* | -0.792 | 0.421 | 0.177 | -0.223 | -0.164 | |||||||||||
C:P | 1 | -0.527 | 0.331 | 0.160 | -0.237 | -0.177 | ||||||||||||
K:Na | 1 | 0.086 | 0.353 | 0.569 | 0.540 | |||||||||||||
生长高 | 1 | 0.947** | 0.763 | 0.801 | ||||||||||||||
基径 | 1 | 0.866* | 0.899* | |||||||||||||||
净生物量 | 1 | 0.997** | ||||||||||||||||
总生物量 | 1 |
注: *表示显著相关(P<0.05); **表示极显著相关(P<0.01) |
表7 秋茄胚轴性状的主成分载荷矩阵及方差贡献率Tab. 7 Principal component loading matrix and variance contribution rate of Kandelia obovata hypocotyl characteristics |
指标类型 | 项目 | 性状 | 主成分1 | 主成分2 | 主成分3 |
---|---|---|---|---|---|
胚轴形态指标 | X1 | 长度 | 0.952 | 0.185 | 0.214 |
X2 | 横径 | 0.972 | 0.176 | -0.038 | |
X3 | 顶径 | 0.976 | 0.168 | -0.042 | |
X4 | 干重 | 0.994 | 0.061 | -0.014 | |
胚轴营养成分指标 | X5 | N | 0.989 | -0.008 | -0.138 |
X6 | P | 0.936 | -0.341 | -0.053 | |
X7 | K | 0.994 | -0.057 | 0.001 | |
X8 | Na | 0.963 | 0.174 | -0.196 | |
X9 | 有机碳 | 0.888 | 0.392 | 0.239 | |
X10 | 淀粉 | 0.930 | 0.333 | -0.140 | |
X11 | C:N | -0.054 | 0.758 | 0.644 | |
X12 | N:P | -0.021 | 0.951 | -0.306 | |
X13 | C:P | -0.043 | 0.974 | 0.201 | |
X14 | K:Na | 0.473 | -0.625 | 0.585 | |
幼苗生长指标 | X15 | 生长高 | 0.884 | 0.418 | -0.131 |
X16 | 基径 | 0.968 | 0.215 | 0.005 | |
X17 | 叶片数 | 0.975 | -0.192 | -0.065 | |
X18 | 根干重 | 0.823 | -0.373 | 0.108 | |
X19 | 茎干重 | 0.977 | -0.200 | -0.015 | |
X20 | 叶干重 | 0.985 | -0.128 | -0.008 | |
X21 | 胚轴干重 | 0.996 | -0.023 | 0.011 | |
X22 | 净生物量 | 0.963 | -0.214 | 0.020 | |
X23 | 总生物量 | 0.979 | -0.151 | 0.017 | |
初始特征值 | 17.592 | 3.852 | 1.110 | ||
方差贡献率/% | 76.485 | 16.746 | 4.827 | ||
累积方差贡献率/% | 76.485 | 93.231 | 98.059 |
表8 秋茄胚轴性状的主成分得分和综合得分Tab. 8 Main ingredient score and comprehensive score of Kandelia obovata hypocotyl characteristics |
胚轴鲜重等级 | F1 | 排序 | F2 | 排序 | F3 | 排序 | F | 排序 |
---|---|---|---|---|---|---|---|---|
4.0~5.0g | -6.26 | 6 | 1.63 | 2 | -0.59 | 5 | -4.54 | 6 |
5.0~6.0g | -2.22 | 5 | -0.43 | 4 | -0.25 | 3 | -1.78 | 5 |
6.0~7.0g | -0.73 | 4 | -2.55 | 6 | -0.35 | 4 | -1.00 | 4 |
7.0~8.0g | 0.75 | 3 | -1.69 | 5 | 1.42 | 1 | 0.36 | 3 |
8.0~9.0g | 2.34 | 2 | 2.63 | 1 | 1.11 | 2 | 2.28 | 2 |
9.0~10.0g | 6.11 | 1 | 0.41 | 3 | -1.33 | 6 | 4.68 | 1 |
[1] |
陈秋夏, 杨升, 王金旺, 等, 2019. 浙江红树林发展历程及探讨[J]. 浙江农业科学, 60(7): 1177-1181
|
[2] |
何琴飞, 彭玉华, 刘秀, 等, 2014. 秋茄胚轴育苗生境适应性试验[J]. 林业科技开发, 28(1): 108-110.
|
[3] |
何文, 张秀芬, 郭素云, 等, 2021. 基于主成分分析和聚类分析对22份马铃薯种质的综合评价[J]. 种子, 40(3): 80-86.
|
[4] |
黄光文, 沈玉平, 李常健, 2010. 甘薯淀粉含量测定的新方法[J]. 湖南农业科学, (17): 109-111.
|
[5] |
冷天凤, 陈兰, 孙建昌, 2020. 早实核桃优树种子品质及子代苗期生长比较[J]. 种子, 39(7): 86-90.
|
[6] |
李泽伦, 丁红, 戴良香, 等, 2021. 种子大小与播种方式对花生生长发育、光合特性及产量的影响[J]. 种子, 40(2): 47-52.
|
[7] |
刘博文, 黎桂阳, 常媛飞, 等, 2021. 野豌豆属种子形态多样性与种子分类鉴定方法的研究[J]. 草地学报, 29(7): 1375-1385.
|
[8] |
刘昌岭, 朱志刚, 贺行良, 等, 2007. 重铬酸钾氧化-硫酸亚铁滴定法快速测定海洋沉积物中有机碳[J]. 岩矿测试, 26(3): 205-208.
|
[9] |
刘云霞, 温云杰, 黄金莉, 等, 2015. AA3型连续流动分析仪与钒钼黄比色法测定玉米植株全磷含量之比较[J]. 农业资源与环境学报, 32(6): 577-582.
|
[10] |
吕航, 王秋彬, 崔佳慧, 等, 2021. 不同仪器测定玉米秸秆与籽粒全钾含量比较[J]. 现代农业科技, (1): 23-25. (in Chinese)
|
[11] |
史文辉, 2018. 种子养分和土壤肥力对栓皮栎苗木质量和造林效果的影响[D]. 北京: 北京林业大学.
|
[12] |
王龙仁, 曾军, 刘双龙, 等, 2021. 白木香人工结香初期营养元素及叶片叶绿素含量的变化[J]. 热带生物学报, 12(3): 326-332.
|
[13] |
王素玉, 2020. 高寒草甸7种优势禾本科植物种子贮藏物质、萌发及幼苗对草地N、P添加的响应[D]. 兰州: 兰州大学.
|
[14] |
王文卿, 王瑁, 2007. 中国红树林[M]. 北京: 科学出版社.
|
[15] |
王鑫磊, 袁湘汝, 张潇潇, 等, 2020. 基于Kjeldahl与Dumas方法的农作物秸秆总氮含量分析[J]. 农业工程学报, 36(6): 206-214.
|
[16] |
武高林, 杜国祯, 2008. 植物种子大小与幼苗生长策略研究进展[J]. 应用生态学报, 19(1): 191-197.
|
[17] |
吴航, 王顺霞, 卜海燕, 等, 2014. 青藏高原53种菊科植物种子中碳、氮、磷含量与种子大小和海拔的关系[J]. 西北植物学报, 34(8): 1635-1641.
|
[18] |
吴航, 2014. 种子大小和海拔对青藏高原东北缘常见植物种子中N、P含量的影响[D]. 兰州: 兰州大学.
|
[19] |
吴亚丽, 2016. 不同家系东京野茉莉种子营养成分和苗期生长差异研究[D]. 南京: 南京林业大学.
|
[20] |
杨慧仙, 2016. 种子大小和海拔对青藏高原东北缘常见植物种子主要营养成分含量的影响[D]. 兰州: 兰州大学.
|
[21] |
杨升, 刘星, 邓瑞娟, 等, 2020. 不同种源秋茄胚轴和幼苗生长性状的地理变异[J]. 生态学杂志, 39(6): 1769-1777.
|
[22] |
闫兴富, 邓晓娟, 王静, 等, 2020. 种子大小和干旱胁迫对辽东栎幼苗生长和生理特性的影响[J]. 应用生态学报, 31(10): 3331-3339.
|
[23] |
袁珂, 薛月芹, 桂仁意, 等, 2010. 微波消解-原子吸收光谱法测定不同产地淡竹叶中微量元素的含量[J]. 光谱学与光谱分析, 30(3): 804-808.
|
[24] |
张金峰, 程继铭, 闫兴富, 等, 2020. 种子特征和播种深度对辽东栎种子萌发和幼苗生长的影响[J]. 广西植物, 40(2): 226-236.
|
[25] |
赵燕昊, 张倩霞, 谢炜, 2019. 种子化学成分与种子活力相关性研究进展[J]. 现代农业科技, (15): 1-3.
|
[26] |
周晓旋, 蔡玲玲, 傅梅萍, 等, 2016. 红树植物胎生现象研究进展[J]. 植物生态学报, 40(12): 1328-1343.
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
/
〈 | 〉 |