Journal of Tropical Oceanography >
Research progress in the continuous measurement technology of suspended sediment concentration
Copy editor: YAO Yantao
Received date: 2022-01-12
Revised date: 2022-02-16
Online published: 2022-02-22
Supported by
Joint Key Funds of National Natural Science Foundation of China(U2040202)
Fundamental Research Funds for the Central Universities
Continuous measurement technology of suspended sediment concentration is the most fundamental requirement in the research fields of hydraulics, environmental science, estuarine and coastal science, as well as marine science. The current popular technical routes including optical backscattering and transmission, specular reflection, remote sensing, acoustic backscattering and transmission attenuation, tuning fork resonance, pressure difference and gamma-ray attenuation and other principles of technical methods were summarized in this paper. The main advantages and problems of each technical method are then discussed, and the future research focus and development direction are prospected as: (1) the principle of optical backscattering is the optimal technical route for low-cost, miniaturized, and high-time-frequency measurement of suspended sediment concentration, and is necessary to focus on range expansion and particle size sensitivity weakening study; (2) low uncertainty suspended sediment concentration profile measurement relies on the development of the acoustic backscattering technical route; (3) the tuning fork resonance technical route is particularly suitable for ultra-high range application scenarios under turbid current and fluid mud conditions; (4) integrate multi-technology sensors and use the artificial intelligence algorithms to replace traditional inverse theory model, etc.
LI Weihua , LI Jiufa , ZHANG Wenxiang . Research progress in the continuous measurement technology of suspended sediment concentration[J]. Journal of Tropical Oceanography, 2022 , 41(4) : 20 -30 . DOI: 10.11978/2022006
[1] |
陈莉琼, 陈晓玲, 田礼乔, 等, 2012. 鄱阳湖水体悬浮颗粒物散射光谱分解方法研究[J]. 光谱学与光谱分析, 32(3): 729-733.
|
[2] |
陈星宇, 黄善和, 何昊哲, 2018. 探测频率对多频声学测沙技术测量误差的影响[J]. 浙江大学学报(工学版), 52(2): 307-316.
|
[3] |
方彦军, 唐懋官, 1990. 超声衰减法含沙量测试研究[J]. 泥沙研究, (2): 1-12.
|
[4] |
河南黄河水文科技有限公司, 2020[2020-01-13]. Aex型振动式悬移质测沙仪[EB/OL]. http://www.hhsw.cn/ArticleShow.asp?ArticleID=113.
|
[5] |
李先达, 魏赞庆, 2018. 谐振式音叉密度仪的测量原理及电路设计[J]. 化学工程与装备, (12): 222-223. (in Chinese)
|
[6] |
林振镇, 陈蕴真, 杨日魁, 等, 2018. 悬沙浓度标定相关性问题的探索[J]. 水文, 38(1): 53-57.
|
[7] |
刘红, 何青, 王元叶, 等, 2006. 长江口浑浊带海域OBS标定的实验研究[J]. 泥沙研究, (5): 52-58.
|
[8] |
牛占, 吉俊峰, 和瑞莉, 等, 2009. Opus原理结构与检测运行[J]. 水利水文自动化, (2): 1-7.
|
[9] |
钱仁亮, 2019. 悬浮泥沙多频声学测量方法研究[D]. 杭州: 浙江大学.
|
[10] |
王爱霞, 李海霞, 窦敏, 等, 2012. Opus在线粒度分析仪比测试验[C]// 中国水文科技新发展——2012中国水文学术讨论会. 南京:471-477 (in Chinese)
|
[11] |
汪亚平, 高抒, 李坤业, 1999. 用ADCP进行走航式悬沙浓度测量的初步研究[J]. 海洋与湖沼, 30(6): 758-763.
|
[12] |
邢超锋, 何青, 郭磊城, 等, 2015. ASM在近底泥沙浓度剖面观测中的应用研究[J]. 泥沙研究, (6): 46-51.
|
[13] |
杨曦光, 黄海军, 严立文, 等, 2015. 近岸水体表层悬浮泥沙平均粒径遥感反演[J]. 武汉大学学报(信息科学版), 40(2): 164-169.
|
[14] |
张文祥, 黄远光, 程武风, 等, 2019. 高浓度悬沙观测的室内标定实验与对比[J]. 泥沙研究, 44(5): 21-26.
|
[15] |
中华人民共和国住房和城乡建设部, 2016. GB/T 50159-2015 河流悬移质泥沙测验规范[S]. 北京: 中国计划出版社.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2016. GB/T 50159-2015 Code for measurements of suspended sediment in open channels[S]. Beijing: China Planning Press. (in Chinese with English abstract)
|
[16] |
周晓妍, 戴志军, 庞文鸿, 等, 2020. ASM-Ⅳ仪器在河口近底层悬沙浓度观测分析中的应用研究[J]. 应用海洋学学报, 39(2): 221-228.
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
CAMPBELL, 2018[2018-05-09]. OBS-3A system operator's manual[EB/OL]. https://s.campbellsci.com/documents/ca/manuals/obs-3a_man.pdf.
|
[22] |
CAMPBELL, 2021[2021-09-25]. OBS-5+ system operator's manual[EB/OL]. https://s.campbellsci.com/documents/us/manuals/obs-5+.pdf.
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
EMERSON, 2021[2021-12-01]. Micro Motion FDM Fork Density and Concentration Meters[EB/OL]. https://www.emerson.com/documents/automation/brochure-density-concentration-meters-micro-motion-en-64220.pdf.
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
HACH, 2018[2021-09-25]. TSS SC user manual[EB/OL]. https://www.hach.com/asset-get.download.jsa?id=7639982983.
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
ISO, 2016. ISO 7027-1:2016 Water quality — Determination of turbidity — Part 1: Quantitative methods[S]. Geneva, Switzerland.
|
[49] |
JFE-ADVANTECH, 2017[2021-09-25]. INFINITY-Turbi ATU75 W2-USB/CAR/CAD data sheet[EB/OL]. https://www.jfe-advantech.co.jp/eng/assets/img/products/ocean-infinity/INFINITY-Turbi(E)_201704.pdf.
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
SYMPATEC, 2021[2021-12-01]. OPUS: Real-time particle size and concentration analysis in process environments from below 0.1µm to 3,000µm[EB/OL]. https://www.sympatec.com/en/particle-measurement/sensors/ultrasonic-extinction/opus/.
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
/
〈 |
|
〉 |