Journal of Tropical Oceanography ›› 2022, Vol. 41 ›› Issue (4): 20-30.doi: 10.11978/2022006CSTR: 32234.14.2022006
• Review • Previous Articles Next Articles
LI Weihua(), LI Jiufa, ZHANG Wenxiang()
Received:
2022-01-12
Revised:
2022-02-16
Online:
2022-07-10
Published:
2022-02-22
Contact:
ZHANG Wenxiang
E-mail:whli@sklec.ecnu.edu.cn;wxzhang@sklec.ecnu.edu.cn
Supported by:
CLC Number:
LI Weihua, LI Jiufa, ZHANG Wenxiang. Research progress in the continuous measurement technology of suspended sediment concentration[J].Journal of Tropical Oceanography, 2022, 41(4): 20-30.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 陈莉琼, 陈晓玲, 田礼乔, 等, 2012. 鄱阳湖水体悬浮颗粒物散射光谱分解方法研究[J]. 光谱学与光谱分析, 32(3): 729-733. |
CHEN LIQIONG, CHEN XIAOLING, TIAN LIQIAO, et al, 2012. Partitioning of the suspended particulate spectral scattering coefficient in Poyang Lake[J]. Spectroscopy and Spectral Analysis, 32(3): 729-733. (in Chinese with English abstract) | |
[2] | 陈星宇, 黄善和, 何昊哲, 2018. 探测频率对多频声学测沙技术测量误差的影响[J]. 浙江大学学报(工学版), 52(2): 307-316. |
CHEN XINGYU, HUANG SHANHE, HE HAOZHE, 2018. Measurement error due to frequency selection in multi-frequency suspended sediment measurement system[J]. Journal of Zhejiang University (Engineering Science), 52(2): 307-316. (in Chinese with English abstract) | |
[3] | 方彦军, 唐懋官, 1990. 超声衰减法含沙量测试研究[J]. 泥沙研究, (2): 1-12. |
FANG YANJUN, TANG MAOGUAN, 1990. Ultrasonic attenuation method for measuring sediment concentration[J]. Journal of Sediment Research, (2): 1-12. (in Chinese with English abstract) | |
[4] | 河南黄河水文科技有限公司, 2020[2020-01-13]. Aex型振动式悬移质测沙仪[EB/OL]. http://www.hhsw.cn/ArticleShow.asp?ArticleID=113. |
[5] | 李先达, 魏赞庆, 2018. 谐振式音叉密度仪的测量原理及电路设计[J]. 化学工程与装备, (12): 222-223. (in Chinese) |
[6] | 林振镇, 陈蕴真, 杨日魁, 等, 2018. 悬沙浓度标定相关性问题的探索[J]. 水文, 38(1): 53-57. |
LIN ZHENZHEN, CHEN YUNZHEN, YANG RIKUI, et al, 2018. Study on correlation of suspended sediment concentration[J]. Journal of China Hydrology, 38(1): 53-57. (in Chinese with English abstract) | |
[7] | 刘红, 何青, 王元叶, 等, 2006. 长江口浑浊带海域OBS标定的实验研究[J]. 泥沙研究, (5): 52-58. |
LIU HONG, HE QING, WANG YUANYE, et al, 2006. OBS situ calibration research in the turbidity maximum of the Changjiang Estuary, China[J]. Journal of Sediment Research, (5): 52-58. (in Chinese with English abstract) | |
[8] | 牛占, 吉俊峰, 和瑞莉, 等, 2009. Opus原理结构与检测运行[J]. 水利水文自动化, (2): 1-7. |
NIU ZHAN, JI JUNFENG, HE RUILI, et al, 2009. Discussion on OPUS principle structure and measurement operation[J]. Automation in Water Resources and Hydrology, (2): 1-7. (in Chinese with English abstract) | |
[9] | 钱仁亮, 2019. 悬浮泥沙多频声学测量方法研究[D]. 杭州: 浙江大学. |
QIAN RENLIANG, 2019. Research on multi-frequency acoustic measurement of suspended sediment[D]. Hangzhou: Zhejiang University. (in Chinese with English abstract) | |
[10] | 王爱霞, 李海霞, 窦敏, 等, 2012. Opus在线粒度分析仪比测试验[C]// 中国水文科技新发展——2012中国水文学术讨论会. 南京:471-477 (in Chinese) |
[11] | 汪亚平, 高抒, 李坤业, 1999. 用ADCP进行走航式悬沙浓度测量的初步研究[J]. 海洋与湖沼, 30(6): 758-763. |
WANG YAPING, GAO SHU, LI KUNYE, 1999. A preliminary study on suspended sediment concentration measurements using an ADCP mounted on a moving vessel[J]. Oceanologia et Limnologia Sinica, 30(6): 758-763. (in Chinese with English abstract) | |
[12] | 邢超锋, 何青, 郭磊城, 等, 2015. ASM在近底泥沙浓度剖面观测中的应用研究[J]. 泥沙研究, (6): 46-51. |
XING CHAOFENG, HE QING, GUO LEICHENG, et al, 2015. Application of ASM at the bottom observation of suspended sediment concentration[J]. Journal of Sediment Research, (6): 46-51. (in Chinese with English abstract) | |
[13] | 杨曦光, 黄海军, 严立文, 等, 2015. 近岸水体表层悬浮泥沙平均粒径遥感反演[J]. 武汉大学学报(信息科学版), 40(2): 164-169. |
YANG XIGUANG, HUANG HAIJUN, YAN LIWEN, et al, 2015. Average grain size inversion of suspended sediment in offshore waters[J]. Geomatics and Information Science of Wuhan University, 40(2): 164-169. (in Chinese with English abstract) | |
[14] | 张文祥, 黄远光, 程武风, 等, 2019. 高浓度悬沙观测的室内标定实验与对比[J]. 泥沙研究, 44(5): 21-26. |
ZHANG WENXIANG, HUANG YUANGUANG, CHENG WUFENG, et al, 2019. Experimental study on high concentration suspend sediment calibration[J]. Journal of Sediment Research, 44(5): 21-26. (in Chinese with English abstract) | |
[15] | 中华人民共和国住房和城乡建设部, 2016. GB/T 50159-2015 河流悬移质泥沙测验规范[S]. 北京: 中国计划出版社. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2016. GB/T 50159-2015 Code for measurements of suspended sediment in open channels[S]. Beijing: China Planning Press. (in Chinese with English abstract) | |
[16] | 周晓妍, 戴志军, 庞文鸿, 等, 2020. ASM-Ⅳ仪器在河口近底层悬沙浓度观测分析中的应用研究[J]. 应用海洋学学报, 39(2): 221-228. |
ZHOU XIAOYAN, DAI ZHIJUN, PANG WENHONG, et al, 2020. Application study of ASM-Ⅳ instrument at the near-bed suspended sediment concentration measurement in estuary[J]. Journal of Applied Oceanography, 39(2): 221-228. (in Chinese with English abstract) | |
[17] |
BINDING C E, GREENBERG T A, BUKATA R P, 2012. An analysis of MODIS-derived algal and mineral turbidity in Lake Erie[J]. Journal of Great Lakes Research, 38(1): 107-116.
doi: 10.1016/j.jglr.2011.12.003 |
[18] |
BIN OMAR A F, BIN MATJAFRI M Z, 2009. Turbidimeter design and analysis: a review on optical fiber sensors for the measurement of water turbidity[J]. Sensors, 9(10): 8311-8335.
doi: 10.3390/s91008311 |
[19] |
BOWERS D G, BINDING C E, 2006. The optical properties of mineral suspended particles: A review and synthesis[J]. Estuarine, Coastal and Shelf Science, 67(1-2): 219-230.
doi: 10.1016/j.ecss.2005.11.010 |
[20] | CALHOUN D L, RASMUSSEN T C, 2001. Densimetric monitoring of suspended-sediment concentrations, northeastern Georgia[C]// Proceedings of the seventh federal interagency sedimentation conference. Reno, Nevada, USA:III86-III93. |
[21] | CAMPBELL, 2018[2018-05-09]. OBS-3A system operator's manual[EB/OL]. https://s.campbellsci.com/documents/ca/manuals/obs-3a_man.pdf. |
[22] | CAMPBELL, 2021[2021-09-25]. OBS-5+ system operator's manual[EB/OL]. https://s.campbellsci.com/documents/us/manuals/obs-5+.pdf. |
[23] |
CHEN JUN, QUAN WENTING, CUI TINGWEI, et al, 2015. Estimation of total suspended matter concentration from MODIS data using a neural network model in the China eastern coastal zone[J]. Estuarine, Coastal and Shelf Science, 155: 104-113.
doi: 10.1016/j.ecss.2015.01.018 |
[24] |
DEKKER A G, VOS R J, PETERS S W M, 2001. Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes[J]. Science of the Total Environment, 268(1-3): 197-214.
doi: 10.1016/S0048-9697(00)00679-3 |
[25] |
DOGLIOTTI, A I, RUDDICK, K G, NECHAD, B, et al, 2015. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters[J]. Remote sensing of environment, 156, 157-168.
doi: 10.1016/j.rse.2014.09.020 |
[26] |
DOWNING J, 2006. Twenty-five years with OBS sensors: The good, the bad, and the ugly[J]. Continental Shelf Research, 26(17-18): 2299-2318.
doi: 10.1016/j.csr.2006.07.018 |
[27] |
DOXARAN D, FROIDEFOND J M, CASTAING P, et al, 2009. Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data[J]. Estuarine, Coastal and Shelf Science, 81(3): 321-332.
doi: 10.1016/j.ecss.2008.11.013 |
[28] |
DRUINE F, VERNEY R, DELOFFRE J, et al, 2018. In situ high frequency long term measurements of suspended sediment concentration in turbid estuarine system (Seine Estuary, France): Optical turbidity sensors response to suspended sediment characteristics[J]. Marine Geology, 400: 24-37.
doi: 10.1016/j.margeo.2018.03.003 |
[29] | EMERSON, 2021[2021-12-01]. Micro Motion FDM Fork Density and Concentration Meters[EB/OL]. https://www.emerson.com/documents/automation/brochure-density-concentration-meters-micro-motion-en-64220.pdf. |
[30] | FELIX D, ALBAYRAK I, ABGOTTSPON A, et al, 2012. Suspended sediment and Pelton turbine wear monitoring[C]// Experimental investigation of various optical and acoustic devices and begin of the case study Fieschertal. Wien, Austria: 483-494. |
[31] |
FELIX D, ALBAYRAK I, BOES R M, 2016. Continuous measurement of suspended sediment concentration: Discussion of four techniques[J]. Measurement, 89: 44-47.
doi: 10.1016/j.measurement.2016.03.066 |
[32] |
FETTWEIS M, RIETHMÜLLER R, VERNEY R, et al, 2019. Uncertainties associated with in situ high-frequency long-term observations of suspended particulate matter concentration using optical and acoustic sensors[J]. Progress in Oceanography, 178: 102162.
doi: 10.1016/j.pocean.2019.102162 |
[33] |
FRASER R N, 1998. Multispectral remote sensing of turbidity among Nebraska Sand Hills lakes[J]. International Journal of Remote Sensing, 19(15): 3011-3016.
doi: 10.1080/014311698214406 |
[34] |
FUGATE D C, FRIEDRICHS C T, 2002. Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST[J]. Continental Shelf Research, 22(11-13): 1867-1886.
doi: 10.1016/S0278-4343(02)00043-2 |
[35] |
GENTILE F, BISANTINO T, CORBINO R, et al, 2010. Monitoring and analysis of suspended sediment transport dynamics in the Carapelle torrent (Southern Italy)[J]. CATENA, 80(1): 1-8.
doi: 10.1016/j.catena.2009.08.004 |
[36] |
GIARDINO C, BRANDO V E, DEKKER A G, et al, 2007. Assessment of water quality in Lake Garda (Italy) using Hyperion[J]. Remote Sensing of Environment, 109(2): 183-195.
doi: 10.1016/j.rse.2006.12.017 |
[37] |
GIARDINO C, BRESCIANI M, VALENTINI E, et al, 2015. Airborne hyperspectral data to assess suspended particulate matter and aquatic vegetation in a shallow and turbid lake[J]. Remote Sensing of Environment, 157: 48-57.
doi: 10.1016/j.rse.2014.04.034 |
[38] | GRAY J R, GARTNER J W, 2009. Technological advances in suspended-sediment surrogate monitoring[J]. Water Resources Research, 45(4): W00D29. |
[39] | GRAY J R, GARTNER J W, 2010. Overview of selected surrogate technologies for high-temporal resolution suspended-sediment monitoring[C]// Proceedings of the joint federal interagency conference 2010: Hydrology and sedimentation for a changing future:Existing and emerging issues. Las Vegas, Nevada, USA. |
[40] |
GUERRERO M, RÜTHER N, ARCHETTI R, 2014. Comparison under controlled conditions between multi-frequency ADCPs and LISST-SL for investigating suspended sand in rivers[J]. Flow Measurement and Instrumentation, 37: 73-82.
doi: 10.1016/j.flowmeasinst.2014.03.007 |
[41] |
GUERRERO M, SZUPIANY R N, AMSLER M, 2011. Comparison of acoustic backscattering techniques for suspended sediments investigation[J]. Flow Measurement and Instrumentation, 22(5): 392-401.
doi: 10.1016/j.flowmeasinst.2011.06.003 |
[42] |
HA H K, MAA J P Y, PARK K, et al, 2011. Estimation of high-resolution sediment concentration profiles in bottom boundary layer using pulse-coherent acoustic Doppler current profilers[J]. Marine Geology, 279(1-4): 199-209.
doi: 10.1016/j.margeo.2010.11.002 |
[43] | HACH, 2018[2021-09-25]. TSS SC user manual[EB/OL]. https://www.hach.com/asset-get.download.jsa?id=7639982983. |
[44] |
HAIMANN M, LIEDERMANN M, LALK P, et al, 2014. An integrated suspended sediment transport monitoring and analysis concept[J]. International Journal of Sediment Research, 29(2): 135-148.
doi: 10.1016/S1001-6279(14)60030-5 |
[45] |
HANES D M, 2016. Acoustic attenuation due to bi-modal size distributions of suspended sediment[J]. Journal of Coastal Research, 75: 23-27.
doi: 10.2112/SI75-005.1 |
[46] |
HSU Y S, CAI JUNFENG, 2010. Densimetric monitoring technique for suspended-sediment concentrations[J]. Journal of Hydraulic Engineering, 136(1): 67-73.
doi: 10.1061/(ASCE)HY.1943-7900.0000132 |
[47] |
HSU Y S, HWANG Y F, HUANG J H, 2008. An exploratory study of using external fluid loading on a vibrating tube for measuring suspended sediment concentration in water[J]. Journal of Physics D: Applied Physics, 41(16): 165504.
doi: 10.1088/0022-3727/41/16/165504 |
[48] | ISO, 2016. ISO 7027-1:2016 Water quality — Determination of turbidity — Part 1: Quantitative methods[S]. Geneva, Switzerland. |
[49] | JFE-ADVANTECH, 2017[2021-09-25]. INFINITY-Turbi ATU75 W2-USB/CAR/CAD data sheet[EB/OL]. https://www.jfe-advantech.co.jp/eng/assets/img/products/ocean-infinity/INFINITY-Turbi(E)_201704.pdf. |
[50] | KOSTADINOV T S, SIEGEL D A, MARITORENA S, 2009. Retrieval of the particle size distribution from satellite ocean color observations[J]. Journal of Geophysical Research: Oceans, 114(C9): C09015. |
[51] | LANDERS M N, 2010. Review of methods to estimate fluvial suspended sediment characteristics from acoustic surrogate metrics[C]// Proceedings of the 2nd joint federal interagency conference. Las Vegas, Nevada, USA: 1-2. |
[52] |
LANDERS M N, STURM T W, 2013. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions[J]. Water Resources Research, 49(9): 5487-5500.
doi: 10.1002/wrcr.20394 |
[53] |
LOISEL H, MANGIN A, VANTREPOTTE V, et al, 2014. Variability of suspended particulate matter concentration in coastal waters under the Mekong's influence from ocean color (MERIS) remote sensing over the last decade[J]. Remote Sensing of Environment, 150, 218-230.
doi: 10.1016/j.rse.2014.05.006 |
[54] |
LONG C M, PAVELSKY T M, 2013. Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment[J]. Remote Sensing of Environment, 129: 197-209.
doi: 10.1016/j.rse.2012.10.019 |
[55] | MANASTER A E, STRAUB T D, WOOD M S, et al, 2020. Field evaluation of the Sequoia Scientific LISST-ABS acoustic backscatter sediment sensor[R]. Open-File Report 2020-1096. |
[56] |
MCANALLY W H, TEETER A, SCHOELLHAMER D, et al, 2007. Management of fluid mud in estuaries, bays, and lakes. Ⅱ: measurement, modeling, and management[J]. Journal of Hydraulic Engineering, 133(1): 23-38.
doi: 10.1061/(ASCE)0733-9429(2007)133:1(23) |
[57] |
MERTEN G H, CAPEL P D, MINELLA J P G, 2014. Effects of suspended sediment concentration and grain size on three optical turbidity sensors[J]. Journal of Soils and Sediments, 14(7): 1235-1241.
doi: 10.1007/s11368-013-0813-0 |
[58] |
MOATE B D, THORNE P D, 2012. Interpreting acoustic backscatter from suspended sediments of different and mixed mineralogical composition[J]. Continental Shelf Research, 46: 67-82.
doi: 10.1016/j.csr.2011.10.007 |
[59] |
MOORE S A, LE COZ J, HURTHER D, et al, 2012. On the application of horizontal ADCPs to suspended sediment transport surveys in rivers[J]. Continental Shelf Research, 46: 50-63.
doi: 10.1016/j.csr.2011.10.013 |
[60] |
NAVRATIL O, ESTEVES M, LEGOUT C, et al, 2011. Global uncertainty analysis of suspended sediment monitoring using turbidimeter in a small mountainous river catchment[J]. Journal of Hydrology, 398(3-4): 246-259.
doi: 10.1016/j.jhydrol.2010.12.025 |
[61] |
OCHIAI S, KASHIWAYA K, 2010. Measurement of suspended sediment for model experiments using general-purpose optical sensors[J]. CATENA, 83(1): 1-6.
doi: 10.1016/j.catena.2010.06.008 |
[62] | PAVELSKY T M, SMITH L C, 2009. Remote sensing of suspended sediment concentration, flow velocity, and lake recharge in the Peace-Athabasca Delta, Canada[J]. Water Resources Research, 45(11): W11417. |
[63] |
RAI A K, KUMAR A, 2015. Continuous measurement of suspended sediment concentration: Technological advancement and future outlook[J]. Measurement, 76: 209-227.
doi: 10.1016/j.measurement.2015.08.013 |
[64] | RASMUSSEN P P, JOHN G R, GLYSSON G D, et al, 2009. Guidelines and procedures for computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data[R]. Rolla, USA: U.S. Geological Survey. |
[65] | RITCHIE J C, SCHIEBE F R, MCHENRY J R, 1976. Remote sensing of suspended sediments in surface waters[J]. Photogrammetric Engineering and Remote Sensing, 42(12): 1539-1545. |
[66] |
SAHIN C, SAFAK I, HSU T J, et al, 2013. Observations of suspended sediment stratification from acoustic backscatter in muddy environments[J]. Marine Geology, 336: 24-32.
doi: 10.1016/j.margeo.2012.12.001 |
[67] | SEQUOIA SCIENTIFIC, 2021[2021-12-01]. LISST-AOBS Super-Turbidity Sensor[EB/OL]. https://www.sequoiasci.com/product/lisst-aobs/. |
[68] |
SHAO YUYANG, MAA J P Y, 2017. Comparisons of different instruments for measuring suspended cohesive sediment concentrations[J]. Water, 9(12): 968.
doi: 10.3390/w9120968 |
[69] | SHEN, FANG, ZHOU, YUNXUAN, PENG, XIANGYI, et al, 2014. Satellite multi-sensor mapping of suspended particulate matter in turbid estuarine and coastal ocean, China. International Journal of Remote Sensing, 35(11-12), 4173-4192. |
[70] |
SIADATMOUSAVI S M, JOSE F, CHEN QIN, et al, 2013. Comparison between optical and acoustical estimation of suspended sediment concentration: Field study from a muddy coast[J]. Ocean Engineering, 72: 11-24.
doi: 10.1016/j.oceaneng.2013.06.002 |
[71] | SIPELGAS L, OSSIPOVA V, RAUDSEPP U, et al, 2009. A bio-optical model for the calculation of suspended matter concentration from MODIS data in the Pakri Bay, the Gulf of Finland[J]. Boreal Environment Research, 14: 415-426. |
[72] | STEMA SYSTEMS, 2016[2021-12-01]. RheoTune Specifications: Density and yield stress measurement[EB/OL]. https://stema-systems.nl/wp-content/uploads/2016/03/Rheotune-2017.pdf. |
[73] |
SU MIN, YAO PENG, WANG ZHENGBING, et al, 2016. Conversion of electro-optical signals to sediment concentration in a silt-sand suspension environment[J]. Coastal Engineering, 114: 284-294.
doi: 10.1016/j.coastaleng.2016.04.014 |
[74] |
SUTHERLAND T F, LANE P M, AMOS C L, et al, 2000. The calibration of optical backscatter sensors for suspended sediment of varying darkness levels[J]. Marine Geology, 162(2-4): 587-597.
doi: 10.1016/S0025-3227(99)00080-8 |
[75] | SYMPATEC, 2021[2021-12-01]. OPUS: Real-time particle size and concentration analysis in process environments from below 0.1µm to 3,000µm[EB/OL]. https://www.sympatec.com/en/particle-measurement/sensors/ultrasonic-extinction/opus/. |
[76] | TE CONNECTIVITY, 2015[2021-10-16]. FPS2800B12C4 fluid property sensor data sheet[EB/OL]. https://www.te.com/content/dam/te-com/documents/sensors/global/FPC012_M_FPS2800B12C4%20Data%20Sheet.pdf. |
[77] |
TENG LIZHI, CHENG HEQIN, DE SWART H E, et al, 2021. On the mechanism behind the shift of the turbidity maximum zone in response to reclamations in the Yangtze (Changjiang) Estuary, China[J]. Marine Geology, 440: 106569.
doi: 10.1016/j.margeo.2021.106569 |
[78] |
THORNE P D, AGRAWAL Y C, CACCHIONE D A, 2007. A comparison of near-bed acoustic backscatter and laser diffraction measurements of suspended sediments[J]. IEEE Journal of Oceanic Engineering, 32(1): 225-235.
doi: 10.1109/JOE.2007.890978 |
[79] | THORNE P D, HARDCASTLE P J, SOULSBY R L, 1993. Analysis of acoustic measurements of suspended sediments[J]. Journal of Geophysical Research: Oceans, 98(C1): 899-910. |
[80] |
THORNE P D, HURTHER D, 2014. An overview on the use of backscattered sound for measuring suspended particle size and concentration profiles in non-cohesive inorganic sediment transport studies[J]. Continental Shelf Research, 73: 97-118.
doi: 10.1016/j.csr.2013.10.017 |
[81] | UHRICH M A, KOLASINAC J, BOOTH P L, et al, 2014. Correlations of turbidity to suspended-sediment concentration in the Toutle River Basin, near Mount St. Helens, Washington, 2010-11[R]. Reston, VA: U.S. Geological Survey. |
[82] | VAN DE HULST H C,1981. Light scattering by small particles[M]. New York: Dover Publications: 496 |
[83] | VERGNE A, BERNI C, LE COZ J, et al, 2021. Acoustic backscatter and attenuation due to river fine sediments: Experimental evaluation of models and inversion methods[J]. Water Resources Research, 57(9): e2021WR029589. |
[84] | WANG CHONGYANG, WANG DANNI, YANG JI, et al, 2020b. Suspended sediment within estuaries and along coasts: A review of spatial and temporal variations based on remote sensing[J]. Journal of Coastal Research, 36(6): 1323-1331. |
[85] |
WANG FAN, ZHOU BIN, XU JIANMING, et al, 2009. Application of neural network and MODIS 250m imagery for estimating suspended sediments concentration in Hangzhou Bay, China[J]. Environmental Geology, 56(6): 1093-1101.
doi: 10.1007/s00254-008-1209-0 |
[86] |
WANG YUNWEI, PENG YUN, DU ZHIYUN, et al, 2020a. Calibrations of suspended sediment concentrations in high-turbidity waters using different in situ optical instruments[J]. Water, 12(11): 3296.
doi: 10.3390/w12113296 |
[87] | WERNER C, 2012. Application of high resolution acoustics for determination of the physical properties of fluid sediments[C]// Hydro12 - Taking care of the sea. Rotterdam, Netherland: 269. |
[88] |
WILSON G W, HAY A E, 2015. Acoustic backscatter inversion for suspended sediment concentration and size: A new approach using statistical inverse theory[J]. Continental Shelf Research, 106: 130-139.
doi: 10.1016/j.csr.2015.07.005 |
[89] |
WREN D G, BARKDOLL B D, KUHNLE R A, et al, 2000. Field techniques for suspended-sediment measurement[J]. Journal of Hydraulic Engineering, 126(2): 97-104.
doi: 10.1061/(ASCE)0733-9429(2000)126:2(97) |
[90] |
WU GUOFENG, CUI LIJUAN, DUAN HONGTAO, et al, 2013. An approach for developing Landsat-5 TM-based retrieval models of suspended particulate matter concentration with the assistance of MODIS[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 85: 84-92.
doi: 10.1016/j.isprsjprs.2013.08.009 |
[91] |
YING JIANYUN, LIANG KEWEI, WU QINGSONG, et al, 2020. Calculation of suspended sediment concentration based on deep learning and OBS turbidity[J]. Journal of Coastal Research, 115(S1): 627-630.
doi: 10.2112/JCR-SI115-166.1 |
[92] |
ZHANG MI, CHEN DEHUA, HE XIAO, et al, 2020. A hydrodynamic model for measuring fluid density and viscosity by using quartz tuning forks[J]. Sensors, 20(1): 198.
doi: 10.3390/s20010198 |
[93] |
ZHANG XIAODONG, LEWIS M, LEE M, et al, 2002. The volume scattering function of natural bubble populations[J]. Limnology and Oceanography, 47(5): 1273-1282.
doi: 10.4319/lo.2002.47.5.1273 |
[1] | HUANG Zuming, ZHOU Xiaoyan, DAI Zhijun, CHE Zhiwei. Analysis of the variations of suspended sediment concentration in vertical profile near the bed of Aegiceras corniculatum tidal flat [J]. Journal of Tropical Oceanography, 2022, 41(4): 38-50. |
[2] | CHEN Qiong, TANG Shilin, WU Jie. Spatial-temporal variation of suspended sediment in the Pearl River Estuary retrieved from GF-4 satellite data* [J]. Journal of Tropical Oceanography, 2022, 41(2): 65-76. |
[3] | Weikang ZHAN,Jie WU,Xing WEI,Shilin TANG,Haigang ZHAN. Quantile trend analysis for suspended sediment concentration in the Pearl River Estuary based on remote sensing [J]. Journal of Tropical Oceanography, 2019, 38(3): 32-42. |
|