Journal of Tropical Oceanography >
Release potential of different forms of nitrogen extracted by chemical leaching in the surface sediments of the Bohai Sea
Copy editor: YAO Yantao
Received date: 2021-12-05
Revised date: 2022-02-22
Online published: 2022-03-01
Supported by
Shanghai Talent Development Fund Support Project(B1-5404-19-0002)
Local Capacity Building Project of Shanghai Municipal Commission of Science and Technology(21010502200)
To investigate the influencing factors of transformable total nitrogen (TTN) and its release potential, this paper used a graded leaching method to classify nitrogen in the Bohai Sea surface sediments into ion exchange nitrogen (IEF-N), weak acid extractable nitrogen (WAEF-N), strong alkali extractable nitrogen (SAEF-N), strong oxidizer extractable nitrogen (SOEF-N) and non-transformable nitrogen (NTN) states, the effects of sediment particle size and organic matter on the amount of released nitrogen were also investigated, and the effects of TTN release in sediment on dissolved inorganic nitrogen (DIN) and Chl a in the overlying water were examined. The results showed that the order of the content of each TTN was SOEF-N > SAEF-N > IEF-N > WAEF-N, the release amount was IEF-N > SAEF-N > SOEF-N > WAEF-N, and the release ratio was IEF-N > WAEF-N > SAEF-N > SOEF-N, respectively, 69.83% of IEF-N, 64.93% of WAEF-N, 56.27% of SAEF-N, and 29.56% of SOEF-N will be released again. Pearson correlation results showed that the release of SOEF-N in the sediment was negatively correlated with silt content, but is positively correlated with sand content; SOEF-N was negatively correlated with both Chl a and dissolved inorganic nitrogen (DIN) in the overlying water, indicating that the release of SOEF-N has less effect on the Chl a and DIN in the overlying water, while waters of surface and bottom had extremely strong positive correlations (r=0.803, P<0.01; r=0.831, P<0.01), respectively, which may imply that there is no significant stratification of surface and bottom waters in this study area.
LI Zhen , LI Yunkai , LIU Yonghu , CHENG Qian , ZHANG Shuo . Release potential of different forms of nitrogen extracted by chemical leaching in the surface sediments of the Bohai Sea[J]. Journal of Tropical Oceanography, 2022 , 41(4) : 163 -171 . DOI: 10.11978/2021173
表1 沉积物和上覆水的一般参数Tab. 1 General parameters of sediments and overlying water |
项目 | 含量范围 | 均值±标准差 |
---|---|---|
黏土/% | 2.42~23.5 | 12.23±5.17 |
粉砂/% | 8.66~74.98 | 50.65±17.38 |
砂/% | 5.43~88.92 | 37.1±21.45 |
有机质/(mgkg-1) | 2575.89~50629.18 | 24945.31±11147.38 |
表层海水DIN/(mgL-1) | 0.04~0.21 | 0.08 ±0.04 |
表层海水Chl a/(μgL-1) | 0.80~2.81 | 1.60±0.49 |
底层海水DIN/(mgL-1) | 0.06~0.19 | 0.09±0.03 |
底层海水Chl a/(μgL-1) | 0.92~10.60 | 4.43±0.50 |
表2 各形态TTN的含量、释放量和释放比例Tab. 2 Content and release capacity of each TTN |
TTN形态 | 范围 | 均值±标准差 | |
---|---|---|---|
含量/(mgkg-1) | IEF-N | 7.85~38.28 | 15.87±6.34 |
WAEF-N | 3.44~18.48 | 7.86±3.72 | |
SAEF-N | 6.36~40.72 | 17.19±10.71 | |
SOEF-N | 9.21~33.76 | 21.07±7.60 | |
释放量/(mgkg-1) | IEF-N | 3.57~26.89 | 11.40±5.26 |
WAEF-N | 2.23~11.79 | 5.13±2.54 | |
SAEF-N | 3.25~19.16 | 8.91±4.32 | |
SOEF-N | 1.71~13.31 | 6.34±3.17 | |
释放比例/% | IEF-N | 45.5~86.93 | 69.83±10.38 |
WAEF-N | 50.03~80.28 | 64.93±7.68 | |
SAEF-N | 32.63~77.79 | 56.27±12.01 | |
SOEF-N | 16.23~48.47 | 29.56±8.83 |
图2 各采样点表层沉积物中不同形态的TTN含量Fig. 2 Nitrogen content of various forms in the surface sediments |
图3 各采样点不同形态的TTN释放量比较Fig. 3 Comparison of nitrogen fraction content and release amount at various sampling sites |
表3 各形态TTN及其氮释放能力与沉积物相关参数的相关性分析Tab. 3 Correlation analysis between the nitrogen release capacity of each TTN and the physical and chemical properties of the sediment |
RIEF-N | RWAEF-N | RSAEF-N | RSOEF-N | IEF-N | WAEF-N | SAEF-N | SOEF-N | |
---|---|---|---|---|---|---|---|---|
RIEF-N | 1 | 0.414* | 0.974** | 0.106 | 0.273 | |||
RWAEF-N | 0.370 | 1 | 0.439* | 0.959** | 0.221 | -0.175 | ||
RSAEF-N | 0.121 | 0.215 | 1 | 0.099 | 0.181 | 0.902** | 0.196 | |
RSOEF-N | 0.296 | -0.340 | 0.024 | 1 | 0.295 | -0.213 | -0.002 | 0.822** |
TN | -0.038 | 0.072 | -0.080 | -0.047 | 0.009 | 0.195 | 0.078 | -0.053 |
黏土 | 0.280 | 0.093 | 0.039 | 0.217 | 0.315 | 0.144 | 0.076 | 0.285 |
粉砂 | 0.208 | 0.100 | -0.173 | -0.162 | 0.201 | 0.089 | -0.157 | -0.169 |
砂 | -0.236 | -0.104 | 0.131 | 0.079 | -0.239 | -0.107 | 0.109 | 0.068 |
OM | 0.404 | 0.131 | 0.055 | 0.239 | 0.402 | 0.201 | 0.063 | 0.194 |
注: 各形态TTN的释放量用R表示, 其下标为对应的TTN形态; *表示在0.05水平上显著性相关, **表示在0.01水平上显著性相关 |
表4 表层沉积物中各形态TTN及其释放量与海水中营养盐和Chl a的相关性分析Tab. 4 Correlation analysis of TTN and its release in the surface sediments on nutrients and Chl a in seawater |
RIEF-N | RWAEF-N | RSAEF-N | RSOEF-N | IEF-N | WAEF-N | SAEF-N | SOEF-N | SDIN | SChl a | BChl a | BDIN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RIEF-N | 1 | |||||||||||
RWAEF-N | 0.370 | 1 | ||||||||||
RSAEF-N | 0.121 | 0.215 | 1 | |||||||||
RSOEF-N | 0.296 | -0.340 | 0.024 | 1 | ||||||||
IEF-N | 0.414* | 0.959** | 0.181 | -0.213 | 1 | |||||||
WAEF-N | 0.974** | 0.439* | 0.099 | 0.295 | 0.501* | 1 | ||||||
SAEF-N | 0.106 | 0.221 | 0.902** | -0.002 | 0.226 | 0.107 | 1 | |||||
SOEF-N | 0.273 | -0.175 | 0.196 | 0.822** | -0.070 | 0.276 | 0.197 | 1 | ||||
SDIN | -0.147 | -0.004 | -0.079 | -0.178 | -0.098 | -0.212 | -0.027 | -0.171 | 1 | |||
SChl a | 0.033 | 0.371 | 0.122 | -0.367 | 0.381 | -0.007 | 0.013 | -0.385 | -0.235 | 1 | ||
BChl a | -0.267 | 0.264 | 0.146 | -0.464* | 0.221 | -0.270 | 0.021 | -0.471* | -0.121 | 0.803** | 1 | |
BDIN | 0.086 | 0.166 | 0.064 | -0.197 | 0.101 | -0.005 | 0.047 | -0.137 | 0.831** | 0.002 | 0.103 | 1 |
注: SDIN、BDIN 分别代表表、底层海水中的DIN含量, SChl a、BChl a 分别代表表、底层海水中的Chl a含量; *表示在0.05水平上显著性相关, **表示在0.01水平上显著性相关 |
[1] |
戴纪翠, 宋金明, 郑国侠, 等, 2007. 胶州湾沉积物氮的环境生物地球化学意义[J]. 环境科学, 28(9): 1924-1928.
|
[2] |
何桐, 谢健, 余汉生, 等, 2009. 大亚湾表层沉积物中氮的形态分布特征[J]. 热带海洋学报, 28(2): 86-91.
|
[3] |
黄欣嘉, 何少华, 王赛, 2017. 湘江衡阳段沉积物对硝态氮的吸附特性研究[J]. 安全与环境学报, 17(5): 1922-1926.
|
[4] |
黄小平, 郭芳, 岳维忠, 2006. 南海北部沉积物间隙水中营养盐研究[J]. 热带海洋学报, 25(5): 43-48.
|
[5] |
姜双城, 林培梅, 林建伟, 等, 2014. 厦门湾沉积物中磷的形态特征及环境意义[J]. 热带海洋学报, 33(3): 72-78.
|
[6] |
姜霞, 王书航, 等, 2012. 沉积物质量调查评估手册[M]. 北京: 科学出版社: 27-30. (in Chinese)
|
[7] |
吕晓霞, 宋金明, 袁华茂, 等, 2004. 南黄海表层沉积物中氮的潜在生态学功能[J]. 生态学报, 24(8): 1635-1642.
|
[8] |
马红波, 宋金明, 吕晓霞, 等, 2003. 渤海沉积物中氮的形态及其在循环中的作用[J]. 地球化学, 32(1): 48-54.
|
[9] |
裴佳瑶, 冯民权, 2020. 环境因子对雁鸣湖沉积物氮磷释放的影响[J]. 环境工程学报, 14(12): 3447-3459.
|
[10] |
孙晓杰, 舒航, 刘云江, 等, 2021. 环境因子对黄河甘宁蒙段表层沉积物中磷吸附-解吸的影响[J]. 水资源保护, 37(4): 51-60.
|
[11] |
王功芹, 朱珠, 张硕, 2016. 海州湾表层沉积物中氮的赋存形态及其生态意义[J]. 环境科学学报, 36(2): 450-457.
|
[12] |
张嘉雯, 魏健, 刘利, 等, 2020. 衡水湖沉积物营养盐形态分布特征及污染评价[J]. 环境科学, 41(12): 5389-5399.
|
[13] |
张小勇, 孙耀, 石晓勇, 等, 2013. 黄海、东海陆架区沉积物中氮的形态分布及与浮游植物总量的关系[J]. 海洋学报, 35(1): 111-120.
|
[14] |
赵晨英, 臧家业, 刘军, 等, 2016. 黄渤海氮磷营养盐的分布、收支与生态环境效应[J]. 中国环境科学, 36(7): 2115-2127.
|
[15] |
赵海超, 王圣瑞, 焦立新, 等, 2013. 洱海沉积物中不同形态氮的时空分布特征[J]. 环境科学研究, 26(3): 235-242.
|
[16] |
郑国侠, 宋金明, 孙云明, 等, 2006. 南海深海盆表层沉积物氮的地球化学特征与生态学功能[J]. 海洋学报, 28(6): 44-51.
|
[17] |
周美玲, 张鉴达, 杨小雨, 等, 2018. 昌黎黄金海岸自然保护区海域表层沉积物中氮赋存形态分布特征[J]. 海洋环境科学, 37(5): 691-698.
|
[18] |
周睿, 袁旭音,
|
[19] |
朱元荣, 张润宇, 吴丰昌, 2011. 滇池沉积物中氮的地球化学特征及其对水环境的影响[J]. 中国环境科学, 31(6): 978-983.
|
[20] |
邹景忠, 董丽萍, 秦保平, 1983. 渤海湾富营养化和赤潮问题的初步探讨[J]. 海洋环境科学, 2(2): 41-54. (in Chinese)
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
/
〈 | 〉 |