Journal of Tropical Oceanography >
Spatiotemporal modal analysis and prediction of surface temperature in East Asia and the Western Pacific*
Copy editor: LIN Qiang
Received date: 2022-01-18
Revised date: 2022-03-24
Online published: 2022-03-21
Supported by
Specialized Research Fund for State Key Laboratories(201909)
University Natural Science Research Project of Anhui Province of China(KJ2019A0103)
Scientific Research Start-up Fund for High-level Introduced Talents of Anhui University of Science and Technology(13190007)
National Key Research and Development Program(2019YFA0706004)
Graduate Innovation Foundation of Anhui University of Science and Technology(2021CX2082)
Land surface temperature (LST) is an important parameter of water cycle and atmospheric environment interworking on the earth's surface (ocean and land), and it is also an essential embodiment of energy transmission between sea and land. Using the LST data retrieved from satellites from 2003 to 2020, this paper analyzes the temporal and spatial modal characteristics of LST by M-K (Mann-Kendall) mutation test, linear regression and empirical orthogonal function (EOF), and uses the seasonal autoregression integrated moving average (SARIMA) model to predict the change trend of LST. It is found that the coastal temperature is high and the inland temperature is low in spring, autumn and winter, decreasing from south to north (10°N—60°N) and from east to west (70°E—140°E); while summer is the opposite. The first mock exam rate of EOF is 29.58%, and the spatial distribution is the Kunlun mountain and Qinling Mountains. It is predicted that after 2020, the range of LST will be -5 ~ 35℃. The results show that: (1) with the increase of latitude and the difference of sea and land location, the LST amplitude in Japan is small, in Mongolia is large, and that in other regions fluctuates stably. (2) The temperature difference between spring and autumn is not significant, and the temperature difference between summer and winter is large, mainly due to solar radiation; Secondly, the monsoon climate is significant. There are many inland mountains and coastal plains, and the land heating effect is less than the water-cooling effect, which will also affect the temperature difference. (3) The changes of LST in East Asia and the Western Pacific are related to human activities, volcanic eruptions and other events.
TANG Chaoli , TAO Xinhua , WEI Yuanyuan , DAI Congming , WEI Heli . Spatiotemporal modal analysis and prediction of surface temperature in East Asia and the Western Pacific*[J]. Journal of Tropical Oceanography, 2022 , 41(6) : 183 -192 . DOI: 10.11978/2022009
图3 2003—2020年东亚及西太平洋LST四季空间分布a. 春季; b. 夏季; c. 秋季; d. 冬季; e. 四季变化折线图; f. 四季距平图。a—d基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)2938号的标准地图制作 Fig. 3 Spatial distribution of LST seasons in East Asia and West Pacific from 2003 to 2020. (a) Spring; (b) summer; (c) autumn; (d) winter; (e) line chart of four seasons; (f) four seasons anomaly map |
图4 2003—2020年东亚及西太平洋LST空间分布图a. AIRS空间分布; b. 纬度分布; c. ERA5再分析空间分布。a、c基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)2938号的标准地图制作 Fig. 4 Spatial distribution of LST in east Asia and west Pacific from 2003 to 2020. (a) Spatial distribution of AIRS; (b) latitude distribution; (c) ERA5 reanalysis spatial distribution |
图5 2003—2020年东亚及西太平洋地区湿度EOF空间分布图和时间系数图a、c、e分别为第一、第二、第三模态的空间分布图, 基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)2938号的标准地图制作; b、d、f为第一、第二、第三模态的时间系数图 Fig. 5 Spatial distribution map and time coefficient map of humidity EOF in east Asia and west Pacific from 2003 to 2020. (a), (c), (e) spatial distribution map; (b), (d), (f) time coefficient diagram |
图6 2003—2020年东亚及西太平洋地区LST的EOF空间分布图和时间系数图a、c、e分别为第一、第二、第三模态的空间分布图, 基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)2938号的标准地图制作; b、d、f为第一、第二、第三模态的时间系数图 Fig. 6 Spatial distribution map and time coefficient map of EOF in east Asia and west Pacific of LST from 2003 to 2020. (a), (c), (e) spatial distribution map; (b), (d), (f) time coefficient diagram |
[1] |
曹晓云, 祁栋林, 肖建设, 等, 2021. 基于卫星观测的青海高原对流层臭氧时空分布特征研究[J]. 环境科学学报, 41(5): 1640-1648.
|
[2] |
陈锦年, 王宏娜, 吕心艳, 2008. 西太平洋暖池时空分布特征及其与ENSO的关系[J]. 海洋学报(中文版), (1): 10-19.
|
[3] |
陈锦年, 左涛, 王宏娜, 2012. 印度洋热通量变化及其对南海夏季风爆发的影响[J]. 海洋与湖沼, 43(5): 884-890.
|
[4] |
高弋斌, 路春燕, 钟连秀, 等, 2019. 1951—2016年中国沿海地区气温与降水量的时空特征[J]. 森林与环境学报, 39(5): 530-539.
|
[5] |
郭甜甜, 陈圣波, 陆天启, 2017. 基于MODIS数据的多时相海表温度反演——以海南岛西南部近海海域为例[J]. 热带海洋学报, 36(1): 9-14.
|
[6] |
韩雪, 蔡怡, 陈幸荣, 等, 2014. 渤黄海冬季海温异常的时空分布特征及影响因子分析[J]. 热带海洋学报, 33(5): 1-12.
|
[7] |
黄盼, 赵伟, 李爱农, 2017. 川西山区太阳辐射估算及其时空分布特征[J]. 山地学报, 35(3): 420-428.
|
[8] |
李刚, 李崇银, 江晓华, 等, 2015. 1900-2009年全球海表温度异常的时空变化特征分析[J]. 热带海洋学报, 34(4): 12-22.
|
[9] |
刘振元, 张杰, 陈立, 2018. 青藏高原植被退化对高原及周边地区大气环流的影响[J]. 生态学报, 38(1): 132-142.
|
[10] |
沈柏竹, 2007. 海陆热状况异常与东亚夏季副热带季风的关联[D]. 长春: 吉林大学.
|
[11] |
王博, 郭鹏, 孟春红, 等, 2022. 基于FY-3D微波成像仪的中国陆地区域地表温度反演及验证[J]. 大气科学学报, 45(1): 12-123.
|
[12] |
王宏娜, 陈锦年, 吕心艳, 2009. 西太平洋暖池海温的时空变化及其在ENSO循环中的作用[J]. 海洋与湖沼, 40(1): 1-7.
|
[13] |
王静, 江丽芳, 2009. 南海南部海域海面温度异常的时空分布特征[J]. 热带海洋学报, 28(4): 72-78.
|
[14] |
王艳慧, 肖瑶, 2014. 北京市1989—2010年地表温度时空分异特征分析[J]. 国土资源遥感, 26(3): 146-152.
|
[15] |
魏凤英, 1999. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社.. (in Chinese)
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
/
〈 | 〉 |