Journal of Tropical Oceanography >
The impact of cold seepage on geochemical indices for redox conditions of marine sediments ―Site F active seep site in the northeastern South China Sea*
Received date: 2022-10-21
Revised date: 2022-12-25
Online published: 2023-03-14
Supported by
National Natural Science Foundation of China(41976061)
Redox-sensitive elements (Mo, U, V, Re, Ni, Co, Cr) have been widely used as geochemical indicators to infer the redox states of marine sediments at deposition, as well as oxygen concentrations in overlying water and atmosphere. However, the sulfidation environment in pore water formed by cold seepage due to microbial activity can result in alterations and ambiguities of redox signals indicated by these elements, which may challenge the effectiveness of the reconstructed redox state. In this paper, the contents of redox-sensitive elements of three push core sediments at the active seep site F of the South China Sea were studied. Compared with the oxic sediments, the seep sediments generally show higher Mo content, indicating the fixed Mo by hydrogen sulfide from the anaerobic oxidation of methane. U/Th, V/Cr, and Ni/Co indicate that the seep sediments are formed in the bottom water with high oxygen concentration, which is consistent with the measured results. However, V/(V+Ni) > 0.7 indicates anoxic conditions, which may be related to the lower Ni content in terrestrial debris. The Re/Mo ratio is similar to the modern seawater value, indicating a euxinic environment. The above analysis shows that Re and Mo in cold seep sediments are easily affected by methane seepage and possibly not used as geochemical indices for redox conditions in a methane-rich environment.
LI Niu , DI Pengfei , FENG Dong , CHEN Duofu . The impact of cold seepage on geochemical indices for redox conditions of marine sediments ―Site F active seep site in the northeastern South China Sea*[J]. Journal of Tropical Oceanography, 2023 , 42(5) : 144 -153 . DOI: 10.11978/2022224
表1 氧化还原条件划分及海洋水体氧化还原环境的判识指标[据吕荐阔等(2021)修改]Tab. 1 Division of redox conditions and identification indicators of redox conditions of marine waters, modified from LYU et al (2021) |
指标 | 氧化环境 | 次氧化环境 | 缺氧环境(无H2S) | 硫化环境 |
---|---|---|---|---|
O2/(mL·L-1) | >2.0 | 0.2~2.0 | <0.2 | 0 |
H2S/(mL·L-1) | 0 | 0 | 0 | >0 |
Mo/(μg·g-1) | >100 | |||
U/Th | <0.75 | 0.75~1.25 | >1.25 | |
Ni/Co | <5 | 5~7 | >7 | |
V/Cr | <2 | 2~4.25 | >4.25 | |
V/(V+Ni) | <0.45 | 0.45~0.60 | 0.54~0.82 | >0.84 |
MoEF /UEF | (0.1~0.3)×SW | (1~3)×SW | (3~10)×SW | |
Re/Mo | <0.3×10-3 | >0.77×10-3 | 接近 0.77×10-3 |
表2 采样位置和说明Tab. 2 Sampling sites and description |
站位 | 插管名称 | 岩芯长/cm | 经度 | 纬度 | 水深/m | 潜次名称 | 海底特征 |
---|---|---|---|---|---|---|---|
F | PC1 | 18 | 119°17′6.4″E | 22°06′57.0″N | 1143 | Dive 2045 | 未见明显渗漏 |
F | PC2 | 12 | 119°17′6.1″E | 22°06′57.9″N | 1151 | Dive 2045 | 微生物席 |
F | PC3 | 30 | 119°17′5.0″E | 22°06′58.1″N | 1163 | Dive 2071 | 微生物席 |
表3 南海北部F站位冷泉活动区3个插管沉积物样品元素含量和比值Tab. 3 Major and trace element contents and ratios in seep site F sediments of the northern South China Sea |
柱样名称 | 深度/cm | Al2O3/% | MnO/% | Re/ (μg·g-1) | Mo/ (μg·g-1) | U/ (μg·g-1) | V/ (μg·g-1) | Co/ (μg·g-1) | Cr/ (μg·g-1) | Ni/ (μg·g-1) | Th/ (μg·g-1) | U/Th | Ni/Co | V/Cr | V/(V+Ni) | Re/Mo×103 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | 0~2 | 13.4 | 0.07 | 0.0006 | 0.8 | 1.4 | 105 | 13.2 | 66 | 33.6 | 11.0 | 0.13 | 2.55 | 1.59 | 0.76 | 0.80 |
2~4 | 13.2 | 0.05 | 0.0012 | 0.9 | 1.6 | 103 | 12.4 | 63 | 32.2 | 10.9 | 0.15 | 2.60 | 1.63 | 0.76 | 1.40 | |
4~6 | 13.6 | 0.05 | 0.0025 | 2.0 | 1.9 | 109 | 12.8 | 65 | 33.1 | 11.5 | 0.17 | 2.59 | 1.68 | 0.77 | 1.23 | |
6~8 | 13.3 | 0.04 | 0.0021 | 3.5 | 1.7 | 106 | 11.9 | 63 | 32.0 | 10.9 | 0.16 | 2.69 | 1.68 | 0.77 | 0.61 | |
8~10 | 13.8 | 0.04 | 0.0017 | 3.3 | 1.9 | 110 | 12.4 | 66 | 33.5 | 11.5 | 0.17 | 2.70 | 1.67 | 0.77 | 0.52 | |
10~12 | 14.1 | 0.04 | 0.0022 | 1.5 | 1.8 | 112 | 12.4 | 67 | 32.9 | 11.6 | 0.16 | 2.65 | 1.67 | 0.77 | 1.46 | |
12~14 | 13.5 | 0.04 | 0.0019 | 1.9 | 1.8 | 108 | 11.7 | 65 | 30.6 | 11.0 | 0.16 | 2.62 | 1.66 | 0.78 | 1.02 | |
14~16 | 13.5 | 0.04 | 0.0033 | 1.0 | 2.3 | 105 | 11.8 | 65 | 31.9 | 10.7 | 0.22 | 2.70 | 1.62 | 0.77 | 3.24 | |
16~18 | 14.1 | 0.04 | 0.0042 | 1.1 | 2.5 | 111 | 12.6 | 67 | 32.9 | 11.0 | 0.23 | 2.61 | 1.66 | 0.77 | 4.00 | |
PC2 | 0~2 | 14.1 | 0.04 | 0.0056 | 4.1 | 1.9 | 112 | 13.0 | 68 | 33.5 | 11.3 | 0.17 | 2.58 | 1.65 | 0.77 | 1.37 |
2~4 | 14.1 | 0.04 | 0.0066 | 5.0 | 2.0 | 111 | 12.6 | 68 | 34.0 | 11.5 | 0.17 | 2.70 | 1.63 | 0.77 | 1.33 | |
4~6 | 14.3 | 0.04 | 0.0055 | 5.3 | 2.1 | 114 | 12.8 | 68 | 34.3 | 11.6 | 0.18 | 2.68 | 1.68 | 0.77 | 1.04 | |
6~8 | 14.5 | 0.05 | 0.0041 | 4.4 | 2.1 | 116 | 13.5 | 71 | 34.1 | 11.8 | 0.18 | 2.53 | 1.63 | 0.77 | 0.94 | |
8~10 | 14.0 | 0.04 | 0.0037 | 4.0 | 2.2 | 111 | 12.5 | 67 | 33.9 | 11.3 | 0.20 | 2.71 | 1.66 | 0.77 | 0.93 | |
10~12 | 14.5 | 0.04 | 0.0041 | 4.6 | 2.1 | 115 | 13.1 | 68 | 34.6 | 11.7 | 0.18 | 2.64 | 1.69 | 0.77 | 0.89 | |
PC3 | 0~2 | 13.2 | 0.04 | 0.0019 | 5.1 | 2.0 | 102 | 12.0 | 63 | 31.4 | 11.4 | 0.18 | 2.62 | 1.62 | 0.76 | 0.37 |
2~4 | 12.7 | 0.04 | 0.0024 | 5.3 | 1.8 | 96 | 11.5 | 62 | 30.0 | 10.6 | 0.17 | 2.61 | 1.55 | 0.76 | 0.45 | |
4~6 | 12.8 | 0.04 | 0.0039 | 7.1 | 2.2 | 95 | 12.0 | 63 | 31.4 | 11.5 | 0.19 | 2.62 | 1.51 | 0.75 | 0.55 | |
6~8 | 12.5 | 0.04 | 0.0037 | 6.2 | 1.9 | 92 | 12.1 | 61 | 30.2 | 10.9 | 0.18 | 2.50 | 1.51 | 0.75 | 0.60 | |
8~10 | 13.1 | 0.04 | 0.0040 | 6.3 | 2.0 | 96 | 12.5 | 64 | 35.9 | 11.3 | 0.18 | 2.87 | 1.50 | 0.73 | 0.64 | |
10~12 | 13.0 | 0.04 | 0.0036 | 5.9 | 2.0 | 96 | 12.6 | 63 | 32.0 | 11.5 | 0.17 | 2.54 | 1.52 | 0.75 | 0.61 | |
12~14 | 13.6 | 0.04 | 0.0031 | 5.1 | 2.0 | 103 | 12.9 | 66 | 32.5 | 11.2 | 0.18 | 2.52 | 1.56 | 0.76 | 0.60 | |
14~16 | 14.2 | 0.04 | 0.0027 | 5.0 | 1.9 | 111 | 12.9 | 68 | 32.9 | 11.7 | 0.16 | 2.55 | 1.63 | 0.77 | 0.54 | |
16~18 | 14.1 | 0.05 | 0.0028 | 5.3 | 1.9 | 110 | 12.7 | 68 | 32.9 | 11.4 | 0.17 | 2.59 | 1.62 | 0.77 | 0.53 | |
18~20 | 14.1 | 0.05 | 0.0027 | 5.2 | 1.7 | 111 | 11.7 | 70 | 33.3 | 10.7 | 0.16 | 2.85 | 1.59 | 0.77 | 0.52 | |
20~22 | 13.8 | 0.04 | 0.0025 | 6.1 | 1.9 | 110 | 13.0 | 68 | 34.3 | 11.4 | 0.17 | 2.64 | 1.62 | 0.76 | 0.41 | |
22~24 | 13.3 | 0.04 | 0.0022 | 5.0 | 1.9 | 105 | 12.3 | 65 | 31.3 | 11.1 | 0.17 | 2.54 | 1.62 | 0.77 | 0.44 | |
24~26 | 13.4 | 0.04 | 0.0021 | 3.9 | 1.9 | 105 | 12.6 | 65 | 32.3 | 11.3 | 0.17 | 2.56 | 1.62 | 0.76 | 0.54 | |
26~28 | 13.7 | 0.04 | 0.0019 | 3.0 | 2.0 | 109 | 13.0 | 67 | 32.9 | 11.2 | 0.18 | 2.53 | 1.63 | 0.77 | 0.63 | |
28~30 | 14.1 | 0.05 | 0.0018 | 3.0 | 2.0 | 111 | 13.2 | 68 | 34.1 | 11.7 | 0.17 | 2.58 | 1.63 | 0.76 | 0.59 |
图2 现代海洋硫化盆地、上升流区最小含氧带、氧化沉积物和冷泉沉积物中氧化还原敏感元素Mo (a)、Re (b)、V (c)、U (d)富集程度的变化硫化盆地数据来自于Brumsack (1989)、Ravizza等(1991)、Piper等(2002)、Lüschen (2004); 上升流区最小含氧带数据来自于Calvert等(1983)、Nameroff等(2002)、Böning等(2004)、Borchers等(2005)、Scholz等(2011); 氧化沉积物数据来自于Morford等(1999)、Bennett等(2020)。方框代表四分位间距; 触须代表第5和第95百分位数; 超过第5和第95百分位数的数据以开放圆圈表示; 黑色实线为上地壳的平均值(Rudnick et al, 2013); 其中Mo、V和U的单位为μg·g-1, Re的单位为ng·g-1, Al的单位为% Fig. 2 Trace metal enrichments (log10 scale) Mo (a)、Re (b)、V (c)、U (d) in a range of sediments from the modern euxinic basins (Brumsack, 1989; Ravizza et al, 1991; Piper et al, 2002; Lüschen, 2004), within perennial oxygen-minimum zones (Calvert et al, 1983; Nameroff et al, 2002; Böning et al, 2004; Borchers et al, 2005; Scholz et al, 2011), oxic (Morford et al, 1999; Bennett et al, 2020) and seep. The box represents the interquartile range; the whiskers represent the 5th and 95th percentiles. Data exceeding the 5th and 95th percentiles are represented as open circles. The crustal average value (Rudnick et al, 2013) is shown as a black solid line. The unit of Mo, V and U is μg·g-1, the unit of Re is ng·g-1, and the unit of Al is % |
图3 冷泉沉积物Ni/Co和U/Th之间的散点图(a)以及V/(V+Ni)和V/Cr之间的散点图(b)图a中蓝色实心圆形为东沙水合物钻孔冷泉区样品, 黄色实心圆形为东沙水合物钻孔非冷泉区样品, 数据来自于南海北部东沙水合物钻孔(Chen et al, 2016)。图a和图b中蓝色空心圆形为PC1, 黑色空心圆形为PC2, 红色空心圆形为PC3。2条虚线表示U/Th比值分别为0.75和1.25; 黑色实线表示V/(V+Ni)比值为0.45 Fig. 3 The scatter plot between Ni/Co and U/Th in seep sediments (a); V/(V+Ni) and V/Cr (b). The data of sediment samples from cold seep and non-cold seep areas are from the Dongsha hydrate drilling in the northern South China Sea (Chen et al, 2016). The blue solid circle represents the samples from the Dongsha hydrate drilling seep area, the yellow solid circle are the samples from the Dongsha hydrate drilling non-seep, the blue hollow circle is PC1, the black hollow circle is PC2, and the red hollow circle is PC3. The two dashed lines indicated that the U/Th ratios were 0.75 and 1.25, respectively. The black solid line indicates that V/(V+Ni) ratio is 0.45 |
图4 不同氧化还原条件下的通过海水值校正过的沉积物中的Re/Mo比值硫化环境数据来自于Calvert等(2015); 非硫化和缺氧环境数据来自于van der Weijden等(2006); 方框代表四分位间距; 触须代表第5和第95百分位数; 超过第5和第95百分位数的数据以×表示 Fig. 4 The Re /Mo ratios in sediments under different redox conditions, euxinic environment data from Calvert et al (2015), and non-euxinic and anoxic environment data from van der Weijden et al (2006). The box represents the interquartile range; the whiskers represent the 5th and 95th percentiles. Data exceeding the 5th and 95th percentiles are represented as × |
图5 冷泉沉积物Mo-U 富集共变反映水体氧化还原状态(弱氧化、缺氧和硫化环境)和颗粒传输机制的出现[修改自Tribovillard等(2012)]图中蓝色实心圆为东沙水合物钻孔冷泉区样品, 黄色实心圆为东沙水合物钻孔非冷泉区样品, 数据来自于南海北部东沙水合物钻孔(Chen et al, 2016)。蓝色空心圆形为PC1, 黑色空心圆形为PC2, 红色空心圆形为PC3。3×海水和0.3×海水是指现代大西洋海水的Mo/U 摩尔比值的3倍和0.3倍值; 颗粒传输指铁锰氧化物吸附对Mo富集的影响 Fig. 5 Seep sediments MoEF vs UEF diagram reflecting the redox state of water and the presence of particle transport, modified from Tribovillard et al (2012). The data of sediment samples from cold seep and non-cold seep areas are from the Dongsha hydrate drilling site in the northern South China Sea (Chen et al, 2016). The blue solid circle is the samples from the Dongsha hydrate drilling seep area, the yellow solid circle is the samples of Dongsha hydrate drilling non-seep, the blue hollow circle is PC1, the black hollow circle is PC2, and the red hollow circle is PC3. 3×seawater and 0.3×seawater are three times and 0.3 times of the Mo/U molar ratio of modern Atlantic seawater, respectively. Particle transport refers to the effect of iron-manganese oxide adsorption on Mo enrichment |
*感谢厦门大学“嘉庚”号科考船和加拿大“ROPOS”号ROV团队帮助采集研究样品。
[1] |
常华进, 储雪蕾, 冯连君, 等, 2009. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 55(1): 91-99.
|
[2] |
程猛, 李超, 周炼, 等, 2015. 钼海洋地球化学与古海洋化学重建[J]. 中国科学: 地球科学, 45(11): 1649-1660.
|
[3] |
林治家, 陈多福, 刘芊, 2008. 海相沉积氧化还原环境的地球化学识别指标[J]. 矿物岩石地球化学通报, 27(1): 72-80.
|
[4] |
吕荐阔, 翟世奎, 于增慧, 等, 2021. 氧化还原敏感性元素在沉积环境判别中的应用研究进展[J]. 海洋科学, 45(12): 108-124.
|
[5] |
邬黛黛, 谢瑞, 孙甜甜, 等, 2020. 南海北部台西南盆地硫酸盐—甲烷转换带自生矿物特征[J]. 地质论评, 66(Supp.1): 81-83.
|
[6] |
解兴伟, 袁华茂, 宋金明, 等, 2019. 海洋沉积物中氧化还原敏感元素对水体环境缺氧状况的指示作用[J]. 地质论评, 65(3): 671-688.
|
[7] |
阎贫, 王彦林, 于俊辉, 等, 2015. 东沙海区泥火山调查进展[J]. 热带海洋学报, 40(3): 34-43.
|
[8] |
杨胜雄, 邱燕, 朱本铎, 等, 2015. 南海地质地球物理图系[M]. 天津: 中国航海图书出版社.
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
/
〈 |
|
〉 |