Journal of Tropical Oceanography >
Analysis of temporal characteristics of chlorophyll a in Lingding Bay during summer
Received date: 2021-04-08
Revised date: 2021-05-17
Online published: 2021-05-19
Supported by
National Natural Science Foundation of China(41776034)
National Natural Science Foundation of China(41976200)
National Natural Science Foundation of China(41706025)
Guangdong Provincial College Innovation Team Project(2019KCXTF021)
First-class Discipline Plan of Guangdong Province(231419012)
First-class Discipline Plan of Guangdong Province(231919030)
Open Fund of the Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences(KLOCW1904)
We used the continuous in-situ air pressure, temperature, sea-surface wind, sea-surface temperature, salinity, chlorophyll a, current observation data, satellite rainfall data, and moderate resolution imaging spectroradiometer (MODIS) visible band images to analyze the characteristics of sea-surface chlorophyll a in Lingding Bay of the Pearl River Estuary, during the study period of July 5 - 20, 2019. The methods of wavelet analysis and ensemble empirical mode decomposition (EEMD) are used. The results showed that the concentration of chlorophyll a during the observation period varied from 0.44 to 1.75 µg·L-1, with an average value of 0.80 µg·L-1. The periods of the signals in the time series of chlorophyll a were 6, 12 and 24 h. It is obvious that there was a phase relationship between chlorophyll a and tidal current, which would be changed by the rainfall over the Pearl River basin. In the study period, chlorophyll a was in an inverse phase relationship with the tidal current, which means that the chlorophyll a concentration reached maximum (minimum) with the maximum flow in the ebb (rising) tide. The difference of chlorophyll a concentration in the ebb and rising tides was about 0.3 µg·L-1. When rainfall occurred in the Pearl River Basin from July 8 to 13, chlorophyll a concentration increased from 0.02 ~ 0.09 µg·L-1 to about 0.15 µg·L-1 at the periods of 6, 12 and 24 h. Furthermore, the chlorophyll a concentration in the Pearl River Estuary increased by about 0.3 µg·L-1 for 80 h after the rainfall. After the rainfall, the time series of tidal current lagged behind chlorophyll a for about 6 h from July 13 to 20. The concentration of chlorophyll a reached minimum (maximum) with high (low) tide. The results present that rainfall not only increased the chlorophyll a in the estuary, but also induced the transformation of the phase relationship between chlorophyll a and tidal current.
Key words: Pearl River Estuary; Lingding Bay; chlorophyll a; tidal cycle; rainfall
ZENG Dianting , LI Junyi , XIE Lingling , YE Xiaomin , ZHOU Da . Analysis of temporal characteristics of chlorophyll a in Lingding Bay during summer[J]. Journal of Tropical Oceanography, 2022 , 41(2) : 16 -25 . DOI: 10.11978/2021043
图5 2019年7月5日—20日海流流速和叶绿素a质量浓度(Chl a)的交叉小波变换和EEMD分解中的全日潮波段分量a. 海流流速东分量与叶绿素a质量浓度的交叉小波谱; b. 海流流速北分量与叶绿素a质量浓度的交叉小波谱。黑色细线表示影响锥, 黑色粗线表示对红色噪声5%的显著水平, 箭头表示两个时间序列之间的相位关系, 前后两个曲线同相(反相、滞后、超前)指向右(左、上、下); c. 海流流速东分量和叶绿素a质量浓度的全日分潮分量; d. 海流流速北分量和叶绿素a质量浓度的全日分潮分量 Fig. 5 The cross wavelet transform and diurnal tidal frequency component in EEMD of ocean current and chlorophyll a |
图7 研究区域7月10日降雨分布(a)和珠江口7月12日的云覆盖范围(b)图a中地图来自MATLAB软件自带底图, 黑色框线为珠江流域, 红点为观测站位; 图b为MODIS可将光影像 Fig. 7 Rainfall distribution in the study area on July 10 (a); Cloud cover over the Pearl River Estuary on July 12 (b) |
[1] |
曹振锐, 黄邦钦, 刘媛, 等, 2005. 厦门海域分粒级叶绿素a含量的分布特征[J]. 台湾海峡, 24(4): 493-501.
|
[2] |
车志伟, 李刚, 王德鸿, 等, 2007. 一个潮汐周期内三亚河口定点的水体环境变化[J]. 广西科学, 14(4): 419-422.
|
[3] |
车志伟, 史云峰, 曲江勇, 等, 2014. 三亚河口叶绿素a含量及其与环境因子的关系[J]. 琼州学院学报, 21(2): 88-92.
|
[4] |
车志伟, 史云峰, 2015. 三亚河口海域叶绿素a与海洋环境因子的关系研究[J]. 环境污染与防治, 37(4): 53-57, 61.
|
[5] |
陈冰, 2009. 珠江口伶仃洋水文特征和综合治理[C]// 中国土木工程学会港口工程分会技术交流文集. 北京: 人民交通出版社: 46-52. (in Chinese)
|
[6] |
丁芮, 2015. 珠江口及邻近海域环流潮汐高分辨率数值模拟研究[D]. 青岛: 中国海洋大学: 23-24.
|
[7] |
黄云峰, 江涛, 冯佳和, 等, 2012. 珠江口广州海域叶绿素a分布特征及环境调控因素[J]. 海洋环境科学, 31(3): 379-384, 404.
|
[8] |
柯志新, 黄良民, 谭烨辉, 等, 2013. 2008年夏末南海北部叶绿素a的空间分布特征及其影响因素[J]. 热带海洋学报, 32(4): 51-57.
|
[9] |
李孟国, 韩志远, 李文丹, 等, 2019. 伶仃洋滩槽演变与水沙环境研究进展[J]. 海洋湖沼通报, (5): 20-33.
|
[10] |
李荣欣, 王雨, 康建华, 等, 2011. 九龙江河口水体叶绿素a含量和初级生产力的时空变化[J]. 台湾海峡, 30(4): 551-558.
|
[11] |
刘华健, 黄良民, 谭烨辉, 等, 2017. 珠江口浮游植物叶绿素a和初级生产力的季节变化及其影响因素[J]. 热带海洋学报, 36(1): 81-91.
|
[12] |
马方方, 王刚, 毕玉明, 等, 2019. 2018年秦皇岛风暴潮前后岸基站及浮标主要水质参数变化分析[J]. 海洋技术学报, 38(6): 68-74.
|
[13] |
沙慧敏, 李小恕, 杨文波, 等, 2009. 用MODIS遥感数据反演东海海表温度、叶绿素a浓度年际变化的研究[J]. 大连水产学院学报, 24(2): 151-156.
|
[14] |
沈新强, 蒋玫, 袁骐, 1999. 长江河口区叶绿素a分布的研究[J]. 中国水产科学, 6(5): 1-5.
|
[15] |
孙越峰, 秦艳杰, 李洪波, 等, 2020. 辽河口海域叶绿素a的时空分布特征及其影响因素[J]. 环境保护科学, 46(2): 44-48.
|
[16] |
王彪, 朱建荣, 2012. 基于FVCOM模型的珠江河口及其邻近海域的潮汐模拟[J]. 热带海洋学报, 31(4): 17-27
[
|
[17] |
朱建荣, 2004. 长江口外海区叶绿素a浓度分布及其动力成因分析[J]. 中国科学 (D辑: 地球科学), 34(8): 757-762.
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
/
〈 | 〉 |